Source code for stonesoup.models.transition.nonlinear

import copy
from typing import Sequence
import numpy as np
from scipy.linalg import block_diag

from ...types.array import StateVector, StateVectors
from .base import TransitionModel
from ..base import GaussianModel, TimeVariantModel
from ...base import Property
from ...types.array import CovarianceMatrix


[docs] class GaussianTransitionModel(TransitionModel, GaussianModel): pass
[docs] class ConstantTurn(GaussianTransitionModel, TimeVariantModel): r"""This is a class implementation of a discrete, time-variant 2D Constant Turn Model. The target is assumed to move with (nearly) constant velocity and also an unknown (nearly) constant turn rate. The model is described by the following SDEs: .. math:: :nowrap: \begin{align} dx_{pos} & = x_{vel} d \quad | {Position \ on \ X-axis (m)} \\ dx_{vel} & = -\omega y_{pos} d \quad | {Speed \ on\ X-axis (m/s)} &\\ dy_{pos} & = y_{vel} d \quad | {Position \ on \ Y-axis (m)} \\ dy_{vel} & = \omega x_{pos} d \quad | {Speed \ on\ Y-axis (m/s)} \\ d\omega & = q_\omega dt \quad | {Position \ on \ X,Y-axes (rad/sec)} \end{align} Or equivalently: .. math:: x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t) where: .. math:: x & = & \begin{bmatrix} x_{pos} \\ x_{vel} \\ y_{pos} \\ y_{vel} \\ \omega \end{bmatrix} .. math:: F(x) & = & \begin{bmatrix} 1 & \frac{\sin\omega dt}{\omega} & 0 & - \frac{(1-\cos\omega dt)}{\omega} & 0 \\ 0 & \cos\omega dt & 0 & - \sin\omega dt & 0 \\ 0 & \frac{(1-\cos\omega dt)}{\omega} & 1 & \frac{\sin\omega dt}{\omega} & 0 \\ 0 & \sin\omega dt & 0 & \sin\omega dt & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} .. math:: Q_t & = & \begin{bmatrix} q_x\frac{dt^3}{3} & q_x\frac{dt^2}{2} & 0 & 0 & 0 \\ q_x\frac{dt^2}{2} & q_xdt & 0 & 0 & 0 \\ 0 & 0 & q_y\frac{dt^3}{3} & q_y\frac{dt^2}{2} & 0 \\ 0 & 0 & q_y\frac{dt^2}{2} & q_ydt & 0 \\ 0 & 0 & 0 & 0 & q_\omega dt \end{bmatrix} """ linear_noise_coeffs: np.ndarray = Property( doc=r"The acceleration noise diffusion coefficients :math:`[q_x, \: q_y]^T`") turn_noise_coeff: float = Property( doc=r"The turn rate noise coefficient :math:`q_\omega`") @property def ndim_state(self): """ndim_state getter method Returns ------- : :class:`int` The number of combined model state dimensions. """ return 5
[docs] def function(self, state, noise=False, **kwargs) -> StateVector: time_interval_sec = kwargs['time_interval'].total_seconds() sv1 = state.state_vector turn_rate = sv1[4, :] # Avoid divide by zero in the function evaluation if turn_rate.dtype != float: turn_rate = turn_rate.astype(float) turn_rate[turn_rate == 0.] = np.finfo(float).eps dAngle = turn_rate * time_interval_sec cos_dAngle = np.cos(dAngle) sin_dAngle = np.sin(dAngle) sv2 = StateVectors( [sv1[0, :] + sin_dAngle/turn_rate * sv1[1, :] - sv1[3, :] / turn_rate * (1. - cos_dAngle), sv1[1, :] * cos_dAngle - sv1[3, :] * sin_dAngle, sv1[1, :] / turn_rate * (1. - cos_dAngle) + sv1[2, :] + sv1[3, :] * sin_dAngle / turn_rate, sv1[1, :] * sin_dAngle + sv1[3, :] * cos_dAngle, turn_rate]) if isinstance(noise, bool) or noise is None: if noise: noise = self.rvs(num_samples=state.state_vector.shape[1], **kwargs) else: noise = 0 return sv2 + noise
[docs] def covar(self, time_interval, **kwargs): """Returns the transition model noise covariance matrix. Returns ------- : :class:`stonesoup.types.state.CovarianceMatrix` of shape\ (:py:attr:`~ndim_state`, :py:attr:`~ndim_state`) The process noise covariance. """ q_x, q_y = self.linear_noise_coeffs q = self.turn_noise_coeff dt = time_interval.total_seconds() Q = np.array([[dt**3 / 3., dt**2 / 2.], [dt**2 / 2., dt]]) C = block_diag(Q*q_x, Q*q_y, dt*q) return CovarianceMatrix(C)
[docs] class ConstantTurnSandwich(ConstantTurn): r"""This is a class implementation of a time-variant 2D Constant Turn Model. This model is used, as opposed to the normal :class:`~.ConstantTurn` model, when the turn occurs in 2 dimensions that are not adjacent in the state vector, eg if the turn occurs in the x-z plane but the state vector is of the form :math:`(x,y,z)`. The list of transition models are to be applied to any state variables that lie in between, eg if for the above example you wanted the y component to move with constant velocity, you would put a :class:`~.ConstantVelocity` model in the list. The target is assumed to move with (nearly) constant velocity and also unknown (nearly) constant turn rate. """ model_list: Sequence[GaussianTransitionModel] = Property( doc="List of Transition Models.") @property def ndim_state(self): """ndim_state getter method Returns ------- : :class:`int` The number of combined model state dimensions. """ return sum(model.ndim_state for model in self.model_list) + 5
[docs] def function(self, state, noise=False, **kwargs) -> StateVector: state_tmp = copy.copy(state) sv_in = state.state_vector sv1 = np.concatenate((sv_in[0:2, 0:], sv_in[-3:, 0:])) state_tmp.state_vector = sv1 # Calculate state vector for CT model sv_ct = super().function(state_tmp, noise=False, **kwargs) # Calculate state vector for model list idx1 = 2 sv_list = [sv_ct[0:2, 0:]] for model in self.model_list: idx2 = idx1 + model.ndim state_tmp.state_vector = sv_in[idx1:idx2, 0:] sv_list.append(model.function(state_tmp, noise=False, **kwargs)) idx1 = idx2 sv_list.append(sv_ct[-3:, 0:]) sv_out = StateVectors(np.concatenate(sv_list)) if isinstance(noise, bool) or noise is None: if noise: noise = self.rvs(num_samples=state.state_vector.shape[1], **kwargs) else: noise = 0 return sv_out + noise
[docs] def covar(self, time_interval, **kwargs): """Returns the transition model noise covariance matrix. Returns ------- : :class:`stonesoup.types.state.CovarianceMatrix` of shape\ (:py:attr:`~ndim_state`, :py:attr:`~ndim_state`) The process noise covariance. """ C_t = np.zeros([self.ndim, self.ndim]) C_ct = super().covar(time_interval, **kwargs) covar_list = [model.covar(time_interval) for model in self.model_list] # Assemble diag block components C_t[2:-3, 2:-3] = block_diag(*covar_list) C_t[0:2, 0:2] = C_ct[0:2, 0:2] C_t[-3:, -3:] = C_ct[-3:, -3:] # Reorder offdiagonal elements C_t[0:2:, -3:] = C_ct[0:2, -3:] C_t[-3:, 0:2] = C_ct[-3:, 0:2] return CovarianceMatrix(C_t)