 
  
    
      
        
             Stone Soup
            
          
              
                v0.1b9
              


  
    
    
    
  



        

              	Framework Design 
	Stone Soup Framework	Component Interfaces
	Base Data Types
	Declarative Base
	Configuration
	Functions
	Measures
	Plotter
	Plugins
	Serialisation
	Components	Enabling Components
	Algorithm Components	Data Association
	Deleters
	Gater
	Hypothesiser
	Initiators
	Mixture Reducers
	Models
	Predictors
	Resampler
	Smoothers
	Updaters






	Data Types



	Tutorials
	Examples
	Demonstrations
	Contributing
	Copyright & License



        

      

    

    
          
          Stone Soup
      

      
        
          
  	 »
	Stone Soup Framework »
	Models »
	Measurement Models
	
     Edit on GitHub
  


  



          
           
             
  
Measurement Models

	
class stonesoup.models.measurement.base.MeasurementModel(ndim_state: int, mapping: Sequence[int])[source]
	Bases: stonesoup.models.base.Model, abc.ABC

Measurement Model base class

	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims






	
ndim_state: int
	Number of state dimensions





	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
abstract property ndim_meas: int
	Number of measurement dimensions










Linear

	
class stonesoup.models.measurement.linear.LinearGaussian(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None)[source]
	Bases: stonesoup.models.measurement.base.MeasurementModel, stonesoup.models.base.LinearModel, stonesoup.models.base.GaussianModel

This is a class implementation of a time-invariant 1D
Linear-Gaussian Measurement Model.

The model is described by the following equations:


\[y_t = H_k*x_t + v_k,\ \ \ \   v(k)\sim \mathcal{N}(0,R)\]

where H_k is a (ndim_meas, ndim_state) matrix and v_k is Gaussian distributed.

	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation






	
noise_covar: stonesoup.types.array.CovarianceMatrix
	Noise covariance





	
property ndim_meas
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
matrix(**kwargs)[source]
	Model matrix \(H(t)\)

	Returns
	The model matrix evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape         (ndim_meas, ndim_state)








	
function(state, noise=False, **kwargs)[source]
	Model function \(h(t,x(t),w(t))\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_meas, 1)








	
covar(**kwargs)[source]
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state: State, **kwargs) → numpy.ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rvs(num_samples: int = 1, random_state=None, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
seed: Optional[int]
	Seed for random number generation











NonLinear

	
class stonesoup.models.measurement.nonlinear.CombinedReversibleGaussianMeasurementModel(model_list: Sequence[GaussianModel], seed: Optional[int] = None)[source]
	Bases: stonesoup.models.base.ReversibleModel, stonesoup.models.base.GaussianModel, stonesoup.models.measurement.base.MeasurementModel

Combine multiple models into a single model by stacking them.

The assumption is that all models are Gaussian, and must be combination of
LinearModel and NonLinearModel models. They must all
expect the same dimension state vector (i.e. have the same
ndim_state), using model mapping as appropriate.

This also implements the inverse_function(), but will raise a
NotImplementedError if any model isn’t either a
LinearModel or ReversibleModel.

	Parameters
		model_list (Sequence[GaussianModel]) – List of Measurement Models.

	seed (Union[int, NoneType], optional) – Seed for random number generation






	
model_list: Sequence[stonesoup.models.base.GaussianModel]
	List of Measurement Models.





	
property ndim_state: int
	Number of state dimensions





	
property ndim_meas: int
	Number of measurement dimensions





	
property mapping
	Mapping between measurement and state dims





	
function(state, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)




	Returns
	The StateVector(s) with the model function evaluated.


	Return type
	StateVector or StateVectors








	
inverse_function(detection, **kwargs) → stonesoup.types.array.StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters
	detection (Detection) – Input state (non-linear format)


	Returns
	The linear co-ordinates


	Return type
	StateVector








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix[source]
	Model covariance





	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
property ndim: int
	Number of dimensions of model





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None)[source]
	Bases: stonesoup.models.measurement.base.MeasurementModel, stonesoup.models.base.GaussianModel, abc.ABC

This class combines the MeasurementModel, NonLinearModel and GaussianModel classes. It is not meant to be instantiated directly but subclasses should be derived from this class.

	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.






	
noise_covar: stonesoup.types.array.CovarianceMatrix
	Noise covariance





	
rotation_offset: stonesoup.types.array.StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix[source]
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
abstract function(state: State, noise: Union[bool, numpy.ndarray] = False, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors]
	Model function \(f_k(x(k),w(k))\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)




	Returns
	The StateVector(s) with the model function evaluated.


	Return type
	StateVector or StateVectors








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
abstract property ndim_meas: int
	Number of measurement dimensions





	
ndim_state: int
	Number of state dimensions





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rvs(num_samples: int = 1, random_state=None, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.CartesianToElevationBearingRange(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement, stonesoup.models.base.ReversibleModel

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of bearing (\(\phi\)), elevation (\(\theta\)) and range (\(r\)), with Gaussian noise in each dimension.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \theta \\
          \phi \\
          r
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          asin(\mathcal{z}/\sqrt{\mathcal{x}^2 + \mathcal{y}^2 +\mathcal{z}^2}) \\
          atan2(\mathcal{y},\mathcal{x}) \\
          \sqrt{\mathcal{x}^2 + \mathcal{y}^2 + \mathcal{z}^2}
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\theta}^2 & 0 & 0 \\
      0 & \sigma_{\phi}^2 & 0 \\
      0 & 0 & \sigma_{r}^2
      \end{bmatrix}\end{split}\]

The mapping property of the model is a 3 element vector, whose first (i.e. mapping[0]), second (i.e. mapping[1]) and third (i.e. mapping[2]) elements contain the state index of the \(x\), \(y\) and \(z\)  coordinates, respectively.


Note

The current implementation of this class assumes a 3D Cartesian plane.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 3x1 array specifying the Cartesian origin offset in terms of \(x,y,z\) coordinates.






	
translation_offset: stonesoup.types.array.StateVector
	A 3x1 array specifying the Cartesian origin offset in terms of \(x,y,z\) coordinates.





	
property ndim_meas: int
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
inverse_function(detection, **kwargs) → stonesoup.types.array.StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters
	detection (Detection) – Input state (non-linear format)


	Returns
	The linear co-ordinates


	Return type
	StateVector








	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.CartesianToBearingRange(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement, stonesoup.models.base.ReversibleModel

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of bearing (\(\phi\)) and range (\(r\)), with Gaussian noise in each dimension.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \phi \\
          r
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          atan2(\mathcal{y},\mathcal{x}) \\
          \sqrt{\mathcal{x}^2 + \mathcal{y}^2}
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\phi}^2 & 0 \\
      0 & \sigma_{r}^2
      \end{bmatrix}\end{split}\]

The mapping property of the model is a 2 element vector, whose first (i.e. mapping[0]) and second (i.e. mapping[1]) elements contain the state index of the \(x\) and \(y\) coordinates, respectively.


Note

The current implementation of this class assumes a 2D Cartesian plane.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 2x1 array specifying the origin offset in terms of \(x,y\) coordinates.






	
translation_offset: stonesoup.types.array.StateVector
	A 2x1 array specifying the origin offset in terms of \(x,y\) coordinates.





	
property ndim_meas: int
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
inverse_function(detection, **kwargs) → stonesoup.types.array.StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters
	detection (Detection) – Input state (non-linear format)


	Returns
	The linear co-ordinates


	Return type
	StateVector








	
function(state, noise=False, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_meas, 1)








	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.CartesianToElevationBearing(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of bearing (\(\phi\)) and elevation (\(\theta\)) and with Gaussian noise in each dimension.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \theta \\
          \phi
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          asin(\mathcal{z}/\sqrt{\mathcal{x}^2 + \mathcal{y}^2 +\mathcal{z}^2}) \\
          atan2(\mathcal{y},\mathcal{x}) \\
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\theta}^2 & 0 \\
      0 & \sigma_{\phi}^2\\
      \end{bmatrix}\end{split}\]

The mapping property of the model is a 3 element vector, whose first (i.e. mapping[0]), second (i.e. mapping[1]) and third (i.e. mapping[2]) elements  contain the state index of the \(x\), \(y\) and \(z\)  coordinates, respectively.


Note

The current implementation of this class assumes a 3D Cartesian plane.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.






	
translation_offset: stonesoup.types.array.StateVector
	A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.





	
property ndim_meas: int
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.Cartesian2DToBearing(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of bearing (\(\phi\)) with Gaussian noise.

The model is described by the following equations:


\[\phi_t = h(\vec{x}_t, v_t)\]

	\(h\) is a non-linear model function of the form:




\[h(\vec{x}_t,v_t) = atan2(\mathcal{y},\mathcal{x}) + v_t\]

	\(v_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[v_t \sim \mathcal{N}(0,\sigma_{\phi}^2)\]

The mapping property of the model is a 2 element vector, whose first (i.e. mapping[0]) and second (i.e. mapping[1]) elements contain the state index of the \(x\) and \(y\) coordinates, respectively.

	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 2x1 array specifying the origin offset in terms of \(x,y\) coordinates.






	
translation_offset: stonesoup.types.array.StateVector
	A 2x1 array specifying the origin offset in terms of \(x,y\) coordinates.





	
property ndim_meas
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs)[source]
	Model function \(h(\vec{x}_t,v_t)\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is False, in
which case no noise will be added.
If ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.CartesianToBearingRangeRate(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None, velocity_mapping: Tuple[int, int, int] = (1, 3, 5), velocity: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of bearing (\(\phi\)), range (\(r\)) and range-rate (\(\dot{r}\)),
with Gaussian noise in each dimension.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \phi \\
          r \\
          \dot{r}
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          atan2(\mathcal{y},\mathcal{x}) \\
          \sqrt{\mathcal{x}^2 + \mathcal{y}^2} \\
          (x\dot{x} + y\dot{y})/\sqrt{x^2 + y^2}
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance
\(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\phi}^2 & 0 & 0\\
      0 & \sigma_{r}^2 & 0 \\
      0 & 0 & \sigma_{\dot{r}}^2
      \end{bmatrix}\end{split}\]

The mapping property of the model is a 3 element vector, whose first (i.e. mapping[0]), second (i.e. mapping[1]) and third (i.e. mapping[2]) elements contain the state index of the \(x\), \(y\) and \(z\)  coordinates, respectively.


Note

This class implementation assuming at 3D cartesian space, it therefore expects a 6D state space.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 3x1 array specifying the origin offset in terms of \(x,y\) coordinates.

	velocity_mapping (Tuple[int, int, int], optional) – Mapping to the targets velocity within its state space

	velocity (StateVector, optional) – A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.






	
velocity_mapping: Tuple[int, int, int]
	Mapping to the targets velocity within its state space





	
translation_offset: stonesoup.types.array.StateVector
	A 3x1 array specifying the origin offset in terms of \(x,y\) coordinates.





	
velocity: stonesoup.types.array.StateVector
	A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.





	
property ndim_meas: int
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.CartesianToElevationBearingRangeRate(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None, velocity_mapping: Tuple[int, int, int] = (1, 3, 5), velocity: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.NonLinearGaussianMeasurement, stonesoup.models.base.ReversibleModel

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be received in the form of elevation (\(\theta\)),  bearing (\(\phi\)), range (\(r\)) and
range-rate (\(\dot{r}\)), with Gaussian noise in each dimension.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \theta \\
          \phi \\
          r \\
          \dot{r}
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          asin(\mathcal{z}/\sqrt{\mathcal{x}^2 + \mathcal{y}^2 +\mathcal{z}^2}) \\
          atan2(\mathcal{y},\mathcal{x}) \\
          \sqrt{\mathcal{x}^2 + \mathcal{y}^2 + \mathcal{z}^2} \\
          (x\dot{x} + y\dot{y} + z\dot{z})/\sqrt{x^2 + y^2 + z^2}
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\theta}^2 & 0 & 0 & 0\\
      0 & \sigma_{\phi}^2 & 0 & 0\\
      0 & 0 & \sigma_{r}^2 & 0\\
      0 & 0 & 0 & \sigma_{\dot{r}}^2
      \end{bmatrix}\end{split}\]

The mapping property of the model is a 3 element vector, whose first (i.e. mapping[0]), second (i.e. mapping[1]) and third (i.e. mapping[2]) elements contain the state index of the \(x\), \(y\) and \(z\)  coordinates, respectively.


Note

This class implementation assuming at 3D cartesian space, it therefore expects a 6D state space.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.

	velocity_mapping (Tuple[int, int, int], optional) – Mapping to the targets velocity within its state space

	velocity (StateVector, optional) – A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.






	
velocity_mapping: Tuple[int, int, int]
	Mapping to the targets velocity within its state space





	
translation_offset: stonesoup.types.array.StateVector
	A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.





	
velocity: stonesoup.types.array.StateVector
	A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.





	
property ndim_meas: int
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs) → stonesoup.types.array.StateVector[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (StateVector) – An input state vector for the target

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
inverse_function(detection, **kwargs) → stonesoup.types.array.StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters
	detection (Detection) – Input state (non-linear format)


	Returns
	The linear co-ordinates


	Return type
	StateVector








	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
pdf(state1: State, state2: State, **kwargs) → Union[stonesoup.types.numeric.Probability, numpy.ndarray]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability








	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors][source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
seed: Optional[int]
	Seed for random number generation









	
class stonesoup.models.measurement.nonlinear.RangeRangeRateBinning(ndim_state: int, mapping: Sequence[int], noise_covar: CovarianceMatrix, range_res: float, range_rate_res: float, seed: Optional[int] = None, rotation_offset: StateVector = None, translation_offset: StateVector = None, velocity_mapping: Tuple[int, int, int] = (1, 3, 5), velocity: StateVector = None)[source]
	Bases: stonesoup.models.measurement.nonlinear.CartesianToElevationBearingRangeRate

This is a class implementation of a time-invariant measurement model, where measurements are assumed to be in the form of elevation (\(\theta\)),  bearing (\(\phi\)), range (\(r\)) and
range-rate (\(\dot{r}\)), with Gaussian noise in each dimension and the
range and range-rate are binned based on the
range resolution and range-rate resolution respectively.

The model is described by the following equations:


\[\vec{y}_t = h(\vec{x}_t, \vec{v}_t)\]

where:

	\(\vec{y}_t\) is a measurement vector of the form:




\[\begin{split}\vec{y}_t = \begin{bmatrix}
          \theta \\
          \phi \\
          r \\
          \dot{r}
      \end{bmatrix}\end{split}\]

	\(h\) is a non-linear model function of the form:




\[\begin{split}h(\vec{x}_t,\vec{v}_t) = \begin{bmatrix}
          \textrm{asin}(\mathcal{z}/\sqrt{\mathcal{x}^2 + \mathcal{y}^2 +\mathcal{z}^2}) \\
          \textrm{atan2}(\mathcal{y},\mathcal{x}) \\
          \sqrt{\mathcal{x}^2 + \mathcal{y}^2 + \mathcal{z}^2} \\
          (x\dot{x} + y\dot{y} + z\dot{z})/\sqrt{x^2 + y^2 + z^2}
          \end{bmatrix} + \vec{v}_t\end{split}\]

	\(\vec{v}_t\) is Gaussian distributed with covariance \(R\), i.e.:




\[\vec{v}_t \sim \mathcal{N}(0,R)\]


\[\begin{split}R = \begin{bmatrix}
      \sigma_{\theta}^2 & 0 & 0 & 0\\
      0 & \sigma_{\phi}^2 & 0 & 0\\
      0 & 0 & \sigma_{r}^2 & 0\\
      0 & 0 & 0 & \sigma_{\dot{r}}^2
      \end{bmatrix}\end{split}\]

The covariances for radar are determined by different factors. The angle error
is affected by the radar beam width. Range error is affected by the SNR and pulse bandwidth.
The error for the range rate is dependent on the dwell time.
The range and range rate are binned to the centre of the cell using


\[x = \textrm{floor}(x/\Delta x)*\Delta x + \frac{\Delta x}{2}\]

The mapping property of the model is a 3 element vector, whose first (i.e. mapping[0]), second (i.e. mapping[1]) and third (i.e. mapping[2]) elements contain the state index of the \(x\), \(y\) and \(z\)  coordinates, respectively.

The velocity_mapping property of the model is a 3 element vector, whose first (i.e. velocity_mapping[0]), second (i.e. velocity_mapping[1]) and third (i.e. velocity_mapping[2]) elements contain the state index of the \(\dot{x}\), \(\dot{y}\) and \(\dot{z}\)  coordinates, respectively.


Note

This class implementation assumes a 3D cartesian space, it therefore expects a 6D state space.



	Parameters
		ndim_state (int) – Number of state dimensions

	mapping (Sequence[int]) – Mapping between measurement and state dims

	noise_covar (CovarianceMatrix) – Noise covariance

	range_res (float) – Size of the range bins in m

	range_rate_res (float) – Size of the velocity bins in m/s

	seed (Union[int, NoneType], optional) – Seed for random number generation

	rotation_offset (StateVector, optional) – A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.

	translation_offset (StateVector, optional) – A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.

	velocity_mapping (Tuple[int, int, int], optional) – Mapping to the targets velocity within its state space

	velocity (StateVector, optional) – A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.






	
covar(**kwargs) → stonesoup.types.array.CovarianceMatrix
	Returns the measurement model noise covariance matrix.

	Returns
	The measurement noise covariance.


	Return type
	CovarianceMatrix of shape        (ndim_meas, ndim_meas)








	
inverse_function(detection, **kwargs) → stonesoup.types.array.StateVector
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters
	detection (Detection) – Input state (non-linear format)


	Returns
	The linear co-ordinates


	Return type
	StateVector








	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
mapping: Sequence[int]
	Mapping between measurement and state dims





	
property ndim: int
	Number of dimensions of model





	
ndim_state: int
	Number of state dimensions





	
noise_covar: CovarianceMatrix
	Noise covariance





	
rotation_offset: StateVector
	A 3x1 array of angles (rad), specifying the clockwise rotation around each Cartesian axis in the order \(x,y,z\). The rotation angles are positive if the rotation is in the counter-clockwise direction when viewed by an observer looking along the respective rotation axis, towards the origin.





	
rvs(num_samples=1, **kwargs) → Union[stonesoup.types.array.StateVector, stonesoup.types.array.StateVectors]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
seed: Optional[int]
	Seed for random number generation





	
translation_offset: StateVector
	A 3x1 array specifying the origin offset in terms of \(x,y,z\) coordinates.





	
velocity: StateVector
	A 3x1 array specifying the sensor velocity in terms of \(x,y,z\) coordinates.





	
velocity_mapping: Tuple[int, int, int]
	Mapping to the targets velocity within its state space





	
range_res: float
	Size of the range bins in m





	
range_rate_res: float
	Size of the velocity bins in m/s





	
property ndim_meas
	ndim_meas getter method

	Returns
	The number of measurement dimensions


	Return type
	int








	
function(state, noise=False, **kwargs)[source]
	Model function \(h(\vec{x}_t,\vec{v}_t)\)

	Parameters
		state (StateVector) – An input state vector for the target

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added and no binning takes place
if True, the output of rvs is added and the
range and range rate are binned)




	Returns
	The model function evaluated given the provided time interval.


	Return type
	numpy.ndarray of shape (ndim_state, 1)








	
pdf(state1, state2, **kwargs)[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

For the first 2 dimensions, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

	where \(y_t\) = state_vector1, \(x_t\) = state_vector2,
	\(Q\) = covar and \(\mathcal{N}\) is a normal distribution




The probability for the binned dimensions, the last 2, can be written as:


\[p = P(a \leq \mathcal{N} \leq b)\]

In this equation a and b are the edges of the bin.

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability














Categorical

	
class stonesoup.models.measurement.categorical.MarkovianMeasurementModel(emission_matrix: Matrix, measurement_categories: Sequence[str] = None)[source]
	Bases: stonesoup.models.measurement.base.MeasurementModel

The measurement model for categorical states

This is a time invariant, measurement model of a hidden Markov process.

A measurement can take one of a finite number of observable categories
\(Z = \{\zeta^n|n\in \mathbf{N}, n\le N\}\) (for some finite \(N\)). A measurement
vector represents a categorical distribution over \(Z\).


\[\mathbf{y}_t^i = P(\zeta_t^i)\]

A state space vector takes the form \(\alpha_t^i = P(\phi_t^i)\), representing a
categorical distribution over a discrete, finite set of possible categories
\(\Phi = \{\phi^m|m\in \mathbf{N}, m\le M\}\) (for some finite \(M\)).

It is assumed that a measurement is independent of everything but the true state of a target.

Intended to be used in conjunction with the CategoricalState type.

	Parameters
		emission_matrix (Matrix) – Matrix of emission/output probabilities \(E_t^{ij} = E^{ij} = P(\zeta_t^i | \phi_t^j)\), determining the conditional probability that a measurement is category \(\zeta^i\) at ‘time’ \(t\) given that the true state category is \(\phi^j\) at ‘time’ \(t\). Columns will be normalised.

	measurement_categories (Sequence[str], optional) – Sequence of measurement category names. Defaults to a list of integers






	
emission_matrix: stonesoup.types.array.Matrix
	Matrix of emission/output probabilities \(E_t^{ij} = E^{ij} = P(\zeta_t^i | \phi_t^j)\), determining the conditional probability that a measurement is category \(\zeta^i\) at ‘time’ \(t\) given that the true state category is \(\phi^j\) at ‘time’ \(t\). Columns will be normalised.





	
measurement_categories: Sequence[str]
	Sequence of measurement category names. Defaults to a list of integers





	
function(state, **kwargs)[source]
	Applies the linear transformation:


\[E^{ij}\alpha_{t-1}^j = P(\zeta_t^i|\phi_t^j)P(\phi_t^j)\]

The resultant vector is normalised.

	Parameters
	state (CategoricalState) – The state to be measured.


	Returns
	state_vector – of shape (ndim_meas, 1). The resultant measurement vector.


	Return type
	stonesoup.types.array.StateVector








	
property ndim_state
	Number of state dimensions





	
property ndim_meas
	Number of measurement dimensions





	
property mapping
	Assumes that all elements of the state space are considered.





	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters
	state (State) – An input state


	Returns
	The model jacobian matrix evaluated around the given state vector.


	Return type
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
property ndim: int
	Number of dimensions of model





	
rvs()[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type
	2-D array of shape (ndim, num_samples)








	
pdf()[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters
		state1 (State) – 

	state2 (State) – 




	Returns
	The likelihood of state1, given state2


	Return type
	Probability or ndarray of Probability
















           

          

          
         Previous
        Next 
    


  


  
    © Copyright 2017-2022 Stone Soup contributors.
      Revision 59c636fb.
      

  


  Built with Sphinx using a
    theme
    provided by Read the Docs.
   


        

      

    
  

  

  
    
       Read the Docs
      v: v0.1b9
      
    
    
      	Versions
	latest
	v0.1b9
	v0.1b8
	v0.1b7
	v0.1b6
	v0.1b5
	v0.1b4
	v0.1b3


      	Downloads


      	On Read the Docs
	
            Project Home
          
	
            Builds
          


    

  

 

