Source code for stonesoup.types.orbitalstate

# -*- coding: utf-8 -*-
import datetime
from enum import Enum
from typing import Mapping, Any

import numpy as np

from ..base import Property
from ..functions.orbital import keplerian_to_rv, tru_anom_from_mean_anom
from . import Type
from .array import StateVector
from .state import State, GaussianState
from .angle import Inclination, EclipticLongitude

[docs]class CoordinateSystem(Enum): """Enumerates the allowable coordinate systems. See OrbitalState help for full explanation of what each of the elements does. """ CARTESIAN = "Cartesian" KEPLERIAN = "Keplerian" TLE = "TLE" EQUINOCTIAL = "Equinoctial" # To allow case insensitivity and the use of "TwoLineElement" as a string to mean TLE @classmethod def _missing_(cls, value): for element in cls: if element.value.lower() == value.lower(): return element if element.value == "TLE" and value.lower() == "twolineelement": return element raise ValueError("%r is not a valid %s" % (value, cls.__name__))
[docs]class Orbital(Type): r"""The orbital base type. This is the building block of Stone Soup's orbital inference routines and follows the principle that you shouldn't have to care which parameterisation you use. The class stores relevant information internally and undertakes whatever conversions are necessary. The gravitational parameter :math:`\mu = GM` can be defined. If left undefined it defaults to that of the Earth, :math:`3.986004418 \, (\pm \, 0.000000008) \times 10^{14} \mathrm{m}^3 \mathrm{s}^{−2}` An orbital state is constructed from the input vector :math:`X_{t_{0}}` at epoch :attr:`State.timestamp`, :math:`t_0`. The coordinates of :math:`X_{t_{0}}` are Cartesian Earth-Centered Inertial (ECI) [m] by default, but may be selected via the "coordinates" keyword by passing a :class:`~.CoordinateSystem` object, or an appropriate string. Allowable coordinate systems are: Coordinates = "Cartesian", the input state vector is .. math:: X_{t_0} = [r_x, r_y, r_z, \dot{r}_x, \dot{r}_y, \dot{r}_z]^{T} where :math:`r_x, r_y, r_z` are the Cartesian position coordinates in the Primary-Centered Inertial frame and :math:`\dot{r}_x, \dot{r}_y, \dot{r}_z` are the corresponding velocity coordinates. Coordinates = "Keplerian" (Keplarian elements), construct using input state vector: .. math:: X_{t_0} = [e, a, i, \Omega, \omega, \theta]^{T} \\ where: :math:`e` is the orbital eccentricity (unitless), :math:`a` the semi-major axis ([length]), :math:`i` the inclination (radian), :math:`\Omega` is the longitude of the ascending node (radian), :math:`\omega` the argument of periapsis (radian), and :math:`\theta` the true anomaly (radian). Coordinates = "TLE" (Two-Line Elements [1]_), initiates using input vector .. math:: X_{t_0} = [i, \Omega, e, \omega, M_0, n]^{T} where :math:`i` the inclination (radian), :math:`\Omega` is the longitude of the ascending node (radian), :math:`e` is the orbital eccentricity (unitless), :math:`\omega` the argument of perigee (radian), :math:`M_0` the mean anomaly (radian) and :math:`n` the mean motion (radian / [time]). This can also be constructed by passing `state_vector=None` and using the metadata. In this instance the metadata must conform to the TLE standard format [2]_ and be included in the metadata dictionary as 'line_1' and 'line_2'. Coordinates = "Equinoctial" (equinoctial elements [2]_), .. math:: X_{t_0} = [a, h, k, p, q, \lambda]^{T} \\ where :math:`a` the semi-major axis ([length]), :math:`h` is the horizontal component of the eccentricity (unitless), :math:`k` is the vertical component of the eccentricity (unitless), :math:`q` is the horizontal component of the inclination (radian), :math:`k` is the vertical component of the inclination (radian), :math:`\lambda` is the mean longitude (radian). References ---------- .. [1] NASA, Definition of Two-line Element Set Coordinate System, []( SSOP_Help/tle_def.html) .. [2] Broucke, R. A. & Cefola, P. J. 1972, Celestial Mechanics, Volume 5, Issue 3, pp. 303-310 """ coordinates: CoordinateSystem = Property( default=CoordinateSystem.CARTESIAN, doc="The parameterisation used on initiation. Acceptable values " "are 'CARTESIAN' (default), 'KEPLERIAN', 'TLE', or 'EQUINOCTIAL'. " "All other inputs will return errors. Will accept string inputs." ) grav_parameter: float = Property( default=3.986004418e14, doc=r"Standard gravitational parameter :math:`\mu = G M`. The default " r"is :math:`3.986004418 \times 10^{14} \,` " r":math:`\mathrm{m}^3 \mathrm{s}^{-2}`.") metadata: Mapping[Any, Any] = Property( default=None, doc="Dictionary containing metadata about orbit." ) def __init__(self, *args, **kwargs): """""" super().__init__(*args, **kwargs) if 'coordinates' in kwargs: coordinates = CoordinateSystem(kwargs['coordinates']) else: coordinates = CoordinateSystem.CARTESIAN # Check to see if the initialisation is via metadata if == 'TLE' and \ (self.state_vector is None or len(self.state_vector) == 0): if 'metadata' in kwargs and kwargs['metadata'] is not None: line1 = kwargs['metadata']['line_1'] line2 = kwargs['metadata']['line_2'] # Resolve the timestamp year = 2000 + int(line1[17:20]) day = line1[20:23] hour = float(line1[23:32]) * 24 fhour = int(np.floor(hour)) minu = (hour - fhour) * 60 fminu = int(np.floor(minu)) seco = (minu - fminu) * 60 fseco = int(np.floor(seco)) mics = (seco - fseco) * 1e6 fmics = int(np.round(mics)) timestamp = datetime.datetime.strptime( str(year) + " " + str(day) + " " + str(fhour) + " " + str(fminu) + " " + str(fseco) + " " + str( fmics), "%Y %j %H %M %S %f") self.state_vector = StateVector([float(line2[8:16]) * np.pi / 180, float(line2[17:25]) * np.pi / 180, float('.' + line2[26:33]), float(line2[34:42]) * np.pi / 180, float(line2[43:51]) * np.pi / 180, float(line2[52:63]) * 2 * np.pi / 86400]) kwargs['timestamp'] = timestamp else: raise TypeError("State vector and metadata cannot both be empty") # Otherwise check that the state vector is the right size elif len(self.state_vector) != 6: raise ValueError( "State vector shape should be 6x1 : got {}".format(self.state_vector.shape)) # Coordinate type checks if == 'CARTESIAN': pass elif == 'KEPLERIAN': if np.less(self.state_vector[0], 0.0) | np.greater(self.state_vector[0], 1.0): raise ValueError("Eccentricity should be between 0 and 1: got {}" .format(self.state_vector[0])) # Convert Keplerian elements to Cartesian # First enforce the correct type self.state_vector[2] = Inclination(self.state_vector[2]) self.state_vector[3] = EclipticLongitude(self.state_vector[3]) self.state_vector[4] = EclipticLongitude(self.state_vector[4]) self.state_vector[5] = EclipticLongitude(self.state_vector[5]) self.state_vector = keplerian_to_rv(self.state_vector, grav_parameter=self.grav_parameter) elif == 'TLE': if np.less(self.state_vector[2], 0.0) | np.greater(self.state_vector[2], 1.0): raise ValueError("Eccentricity should be between 0 and 1: got {}" .format(self.state_vector[0])) # First enforce the correct type self.state_vector[0] = Inclination(self.state_vector[0]) self.state_vector[1] = EclipticLongitude(self.state_vector[1]) self.state_vector[3] = EclipticLongitude(self.state_vector[3]) self.state_vector[4] = EclipticLongitude(self.state_vector[4]) # Get the semi-major axis from the mean motion semimajor_axis = np.cbrt(self.grav_parameter / self.state_vector[5] ** 2) # True anomaly from mean anomaly tru_anom = tru_anom_from_mean_anom(self.state_vector[4], self.state_vector[2]) # Use given and derived quantities to convert from Keplarian to # Cartesian self.state_vector = keplerian_to_rv(StateVector([self.state_vector[2], semimajor_axis, self.state_vector[0], self.state_vector[1], self.state_vector[3], tru_anom]), grav_parameter=self.grav_parameter) elif == 'EQUINOCTIAL': if np.less(self.state_vector[1], -1.0) | np.greater(self.state_vector[1], 1.0): raise ValueError("Horizontal Eccentricity should be between -1 " "and 1: got {}".format(self.state_vector[1])) if np.less(self.state_vector[2], -1.0) | np.greater(self.state_vector[2], 1.0): raise ValueError("Vertical Eccentricity should be between -1 and " "1: got {}".format(self.state_vector[2])) # First enforce the correct type for mean longitude self.state_vector[5] = EclipticLongitude(self.state_vector[5]) # Calculate the Keplarian element quantities semimajor_axis = self.state_vector[0] raan = np.arctan2(self.state_vector[3], self.state_vector[4]) inclination = 2 * np.arctan(self.state_vector[3] / np.sin(raan)) arg_per = np.arctan2(self.state_vector[1], self.state_vector[2]) - raan mean_anomaly = self.state_vector[5] - arg_per - raan eccentricity = self.state_vector[1] / (np.sin(arg_per + raan)) # True anomaly from mean anomaly tru_anom = tru_anom_from_mean_anom(mean_anomaly, eccentricity) # Convert from Keplarian to Cartesian self.state_vector = keplerian_to_rv(StateVector([eccentricity, semimajor_axis, inclination, raan, arg_per, tru_anom]), grav_parameter=self.grav_parameter) # Some vector quantities @property def _nodeline(self): """The vector node line (defines the longitude of the ascending node in the Primary-centered inertial frame)""" k = np.array([0, 0, 1]) boldh = self.specific_angular_momentum boldn = np.cross(k, boldh, axis=0) n = np.sqrt(, boldn).item()) # If inclination is 0, the node line is [0] and has 0 magnitude. By # convention in these situations, we set the node line as a unit vector # pointing along x. Note that the magnitude of the vector is not # consistent with that produced by the cross product. (But we assume # that the node line is only used for directional information. if n < np.finfo(n).eps: return np.array([1, 0, 0]) else: return boldn @property def _eccentricity_vector(self): r""" The eccentricity vector :math:`\mathbf{e}`""" rang = self.range speed = self.speed radial_velocity =[0:3].T, self.state_vector[3:6]).item() / rang return (1 / self.grav_parameter) * ((speed ** 2 - self.grav_parameter / rang) * self.state_vector[0:3] - rang * radial_velocity * self.state_vector[3:6]) @property def specific_angular_momentum(self): r"""The specific angular momentum, :math:`\mathbf{h}`.""" return np.cross(self.state_vector[0:3], self.state_vector[3:6], axis=0) @property def cartesian_state_vector(self): r"""The state vector :math:`X_{t_0} = [r_x, r_y, r_z, \dot{r}_x, \dot{r}_y, \dot{r}_z]^{T}` in 'Primary-Centred' Inertial coordinates, equivalent to ECI in the case of the Earth. """ return StateVector(self.state_vector) # Some scalar quantities @property def epoch(self): """The epoch, or state timestamp.""" return self.timestamp @property def range(self): """The distance to object (from gravitational centre of primary).""" return np.sqrt([0:3].T, self.state_vector[0:3])).item() @property def speed(self): """The current instantaneous speed (scalar).""" return np.sqrt([3:6].T, self.state_vector[3:6]).item()) @property def eccentricity(self): r"""The orbital eccentricity, :math:`e \; (0 \le e \le 1)`. Note ---- This version of the calculation uses a form dependent only on scalars. """ # TODO Check to see which of the following is quicker/better # Either # return np.sqrt(, # self._eccentricity_vector).item()) # or return np.sqrt(1 + (self.mag_specific_angular_momentum ** 2 / self.grav_parameter ** 2) * (self.speed ** 2 - 2 * self.grav_parameter / self.range)) @property def semimajor_axis(self): """The orbital semi-major axis.""" return (self.mag_specific_angular_momentum ** 2 / self.grav_parameter) * \ (1 / (1 - self.eccentricity ** 2)) # Used to be this # return 1/((2/self.range) - (self.speed**2)/self.grav_parameter) @property def inclination(self): r"""Orbital inclination, :math:`i \; (0 \le i < \pi)`, [rad].""" boldh = self.specific_angular_momentum h = self.mag_specific_angular_momentum # Note no quadrant ambiguity return Inclination(np.arccos(np.clip(boldh[2].item() / h, -1, 1))) @property def longitude_ascending_node(self): r"""The longitude (or right ascension) of ascending node, :math:`\Omega \; (0 \leq \Omega < 2\pi)`.""" boldn = self._nodeline n = np.sqrt(, boldn).item()) # Quadrant ambiguity if boldn[1].item() >= 0: return EclipticLongitude(np.arccos(np.clip(boldn[0].item() / n, -1, 1))) else: # boldn[1].item() < 0: return EclipticLongitude(2 * np.pi - np.arccos(np.clip(boldn[0].item() / n, -1, 1))) @property def argument_periapsis(self): r"""The argument of periapsis, :math:`\omega \; (0 \le \omega < 2\pi)` in radians.""" boldn = self._nodeline n = np.sqrt(, boldn).item()) bolde = self._eccentricity_vector # If eccentricity is 0 then there's no unambiguous longitude of # periapsis. In these situations we set the argument of periapsis to # 0. if self.eccentricity < np.finfo(self.eccentricity).eps: return 0 # Quadrant ambiguity. The clip function is required to mitigate against # the occasional floating-point errors which push the ratio outside the # -1,1 region. if bolde[2].item() >= 0: return EclipticLongitude(np.arccos(np.clip(, bolde).item() / (n * self.eccentricity), -1, 1))) else: # bolde[2].item() < 0: return EclipticLongitude(2 * np.pi - np.arccos(np.clip(, bolde).item() / (n * self.eccentricity), -1, 1))) @property def true_anomaly(self): r"""The true anomaly, :math:`\theta \; (0 \le \theta < 2\pi)` in radians.""" # Resolve the quadrant ambiguity.The clip function is required to # mitigate against floating-point errors which push the ratio outside # the -1,1 region. radial_velocity =[0:3].T, self.state_vector[3:6]).item() / self.speed if radial_velocity >= 0: return EclipticLongitude(np.arccos(np.clip( / self.eccentricity, self.state_vector[0:3] / self.range).item(), -1, 1))) else: # radial_velocity < 0: return EclipticLongitude(2 * np.pi - np.arccos(np.clip( / self.eccentricity, self.state_vector[0:3] / self.range).item(), -1, 1))) @property def eccentric_anomaly(self): r"""The eccentric anomaly, :math:`E \; (0 \le E < 2\pi)` in radians. Note ---- This computes the quantity exactly via the Keplerian eccentricity and true anomaly rather than via the mean anomaly using an iterative procedure. """ return EclipticLongitude(np.remainder(2 * np.arctan(np.sqrt((1 - self.eccentricity) / (1 + self.eccentricity)) * np.tan(self.true_anomaly / 2)), 2 * np.pi)) @property def mean_anomaly(self): r"""Mean anomaly, :math:`M \; (0 \le M < 2\pi`), in radians. Note ---- Uses the eccentric anomaly and Kepler's equation to get mean anomaly from true anomaly and eccentricity. """ return EclipticLongitude(self.eccentric_anomaly - self.eccentricity * np.sin(self.eccentric_anomaly)) # Kepler's equation @property def period(self): """Orbital period, :math:`T` ([time]).""" return ((2 * np.pi) / np.sqrt(self.grav_parameter)) * \ np.power(self.semimajor_axis, 3 / 2) @property def mean_motion(self): r"""The mean motion, :math:`\frac{2 \pi}{T}`, where :math:`T` is the period, (rad / [time]). """ return 2 * np.pi / self.period @property def mag_specific_angular_momentum(self): """The magnitude of the specific angular momentum, :math:`h`.""" boldh = self.specific_angular_momentum return np.sqrt(, boldh).item()) # Alternative via scalars # return np.sqrt(self.grav_parameter * self.semimajor_axis * # (1 - self.eccentricity ** 2)) @property def specific_orbital_energy(self): r"""Specific orbital energy (:math:`\frac{-GM}{2a}`).""" return -self.grav_parameter / (2 * self.semimajor_axis) @property def equinoctial_h(self): r"""The horizontal component of the eccentricity in equinoctial coordinates is :math:`h = e \sin (\omega + \Omega)`.""" return self.eccentricity * np.sin(self.argument_periapsis + self.longitude_ascending_node) @property def equinoctial_k(self): r"""The vertical component of the eccentricity in equinoctial coordinates is :math:`k = e \cos (\omega + \Omega)`.""" return self.eccentricity * np.cos(self.argument_periapsis + self.longitude_ascending_node) @property def equinoctial_p(self): r"""The horizontal component of the inclination in equinoctial coordinates is :math:`p = \tan (i/2) \sin \Omega`.""" return np.tan(self.inclination / 2) * \ np.sin(self.longitude_ascending_node) @property def equinoctial_q(self): r"""The vertical component of the inclination in equinoctial coordinates is :math:`q = \tan (i/2) \cos \Omega`.""" return np.tan(self.inclination / 2) * np.cos(self.longitude_ascending_node) @property def mean_longitude(self): r"""The mean longitude, defined as :math:`\lambda = M_0 + \omega + \Omega` (rad).""" return EclipticLongitude(self.mean_anomaly + self.argument_periapsis + self.longitude_ascending_node) # The following return vectors of complete sets of elements @property def keplerian_elements(self): r"""The vector of Keplerian elements :math:`X = [e, a, i, \Omega, \omega, \theta]^{T}` where :math:`e` is the orbital eccentricity (unitless), :math:`a` the semi-major axis ([length]), :math:`i` the inclination (radian), :math:`\Omega` is the longitude of the ascending node (radian), :math:`\omega` the argument of periapsis (radian), and :math:`\theta` the true anomaly (radian).""" return StateVector(np.array([[self.eccentricity], [self.semimajor_axis], [self.inclination], [self.longitude_ascending_node], [self.argument_periapsis], [self.true_anomaly]])) @property def two_line_element(self): r"""The Two-Line Element vector :math:`X = [i, \Omega, e, \omega, M_0, n]^{T}` where :math:`i` the inclination (radian) :math:`\Omega` is the longitude of the ascending node (radian), :math:`e` is the orbital eccentricity (unitless), :math:`\omega` the argument of periapsis (radian), :math:`M_0` the mean anomaly (radian) :math:`n` the mean motion (rad/[time]). [2]_""" return StateVector(np.array([[self.inclination], [self.longitude_ascending_node], [self.eccentricity], [self.argument_periapsis], [self.mean_anomaly], [self.mean_motion]])) @property def equinoctial_elements(self): r"""The equinoctial elements, :math:`X = [a, h, k, p, q, \lambda]^{T}` where :math:`a` the semi-major axis ([length]), :math:`h` and :math:`k` are the horizontal and vertical components of the eccentricity respectively (unitless), :math:`p` and :math:`q` are the horizontal and vertical components of the inclination respectively (radian) and :math:`\lambda` is the mean longitude (radian). [3]_ """ return StateVector(np.array([[self.semimajor_axis], [self.equinoctial_h], [self.equinoctial_k], [self.equinoctial_p], [self.equinoctial_q], [self.mean_longitude]]))
[docs]class OrbitalState(Orbital, State): r"""The orbital state class which inherits from :class:`~.Orbital` and :class:`~.State`. The :attr:`state_vector` is held as :math:`[\mathbf{r}, \dot{\mathbf{r}}]`, the "Orbital State Vector" (as traditionally understood in orbital mechanics), where :math:`\mathbf{r}` is the (3D) Cartesian position in the primary-centered inertial frame, while :math:`\dot{\mathbf{r}}` is the corresponding velocity vector. All methods provided by :class:`~.Orbital` are available. Formulae for conversions are generally found in, or derived from [3]_. References ---------- .. [3] Curtis, H.D. 2010, Orbital Mechanics for Engineering Students (3rd Ed), Elsevier Aerospace Engineering Series """
[docs]class GaussianOrbitalState(Orbital, GaussianState): """An orbital state for use in Kalman filters (and perhaps elsewhere). Inherits from GaussianState so has a covariance matrix. As no checks on the validity of the covariance matrix are made, care should be exercised in its use. The propagator will generally require a particular coordinate reference which must be understood. All methods provided by :class:`~.Orbital` are available. """