Kernel

class stonesoup.kernel.Kernel[source]

Kernel base type

A Kernel provides a means to translate state space or measurement space into kernel space.

class stonesoup.kernel.QuadraticKernel(c: float = 1, ialpha: float = 10.0)[source]

Quadratic Kernel type

This kernel returns the quadratic kernel state vector from a pair of KernelParticleState state vectors.

The Quadratic kernel of state vectors \(\mathbf{x}\) and \(\mathbf{x}'\) is defined as:

\[\mathtt{k}\left(\mathbf{x}, \mathbf{x}'\right) = \left(\alpha \langle \mathbf{x}, \mathbf{x}' \rangle + c\right)^2\]
Parameters:
  • c (float, optional) – Free parameter trading off the influence of higher-order versus lower-order terms in the polynomial. Default is 1.

  • ialpha (float, optional) – Slope. Range is [1e0, 1e4].

c: float

Free parameter trading off the influence of higher-order versus lower-order terms in the polynomial. Default is 1.

ialpha: float

Slope. Range is [1e0, 1e4].

class stonesoup.kernel.QuarticKernel(c: float = 1, ialpha: float = 10.0)[source]

Quartic Kernel

This kernel returns the quartic kernel state from a pair of KernelParticleState objects.

The Quartic kernel of state vectors \(\mathbf{x}\) and \(\mathbf{x}'\) is defined as:

\[\mathtt{k}(\mathbf{x}, \mathbf{x}') = \left(\alpha \langle \mathbf{x}, \mathbf{x}' \rangle + c\right)^4\]
Parameters:
  • c (float, optional) – Free parameter trading off the influence of higher-order versus lower-order terms in the polynomial. Default is 1.

  • ialpha (float, optional) – Slope. Range is [1e0, 1e4].

c: float

Free parameter trading off the influence of higher-order versus lower-order terms in the polynomial. Default is 1.

ialpha: float

Slope. Range is [1e0, 1e4].

class stonesoup.kernel.GaussianKernel(variance: float = 10.0)[source]

Gaussian Kernel

This kernel returns the Gaussian kernel state vector from a pair of KernelParticleState state vectors.

The Gaussian kernel of state vectors \(\mathbf{x}\) and \(\mathbf{x}'\) is defined as:

\[\mathtt{k}(\mathbf{x}, \mathbf{x}') = \mathrm{exp}\left(-\frac{||\mathbf{x} - \mathbf{x}'||^{2}}{2\pi\sigma^2}\right)\]
Parameters:

variance (float, optional) – Denoted as \(\sigma^2\) in the equation above. Determines the width of the Gaussian kernel. Range is [1e0, 1e2].

variance: float

Denoted as \(\sigma^2\) in the equation above. Determines the width of the Gaussian kernel. Range is [1e0, 1e2].