

 Stone Soup

 latest

 	Framework Design
	Stone Soup Framework	Component Interfaces
	Base Data Types
	Declarative Base
	Configuration
	Functions
	Measures
	Plotter
	Plugins
	Serialisation
	Components	Enabling Components	Detectors
	Feeders
	Metric Generators
	Movables
	Platforms
	Readers
	Sensors
	Sensor Managers
	Simulators
	Trackers
	Writers

	Algorithm Components

	Data Types

	Tutorials
	Examples
	Demonstrations
	Contributing
	Copyright & License

 Stone Soup

 	
	Stone Soup Framework
	Simulators
	
 Edit on GitHub

Simulators

Simulators for data input into Stone Soup.

Stone Soup can make use of simulators to generate ground truth tracks, sensor
data and detections. These are similar to reader.Reader, but data is
generated, rather than read from a file, etc. They should come with various
configuration options to allow customisation of the simulation.

	
class stonesoup.simulator.base.Simulator[source]
	Bases: Base, BufferedGenerator

Simulator base class

	
class stonesoup.simulator.base.DetectionSimulator[source]
	Bases: Simulator, DetectionReader

Detection Simulator base class

	
class stonesoup.simulator.base.GroundTruthSimulator[source]
	Bases: Simulator, GroundTruthReader

Ground truth simulator

	
class stonesoup.simulator.base.SensorSimulator[source]
	Bases: Simulator, SensorDataReader

Sensor Simulator base class

Simple Simulators

	
class stonesoup.simulator.simple.SingleTargetGroundTruthSimulator(transition_model: TransitionModel, initial_state: State, timestep: timedelta = datetime.timedelta(seconds=1), number_steps: int = 100)[source]
	Bases: GroundTruthSimulator

Target simulator that produces a single target

	Parameters:
		transition_model (TransitionModel) – Transition Model used as propagator for track.

	initial_state (State) – Initial state to use to generate ground truth

	timestep (datetime.timedelta, optional) – Time step between each state. Default one second.

	number_steps (int, optional) – Number of time steps to run for

	
transition_model: TransitionModel
	Transition Model used as propagator for track.

	
initial_state: State
	Initial state to use to generate ground truth

	
timestep: timedelta
	Time step between each state. Default one second.

	
number_steps: int
	Number of time steps to run for

	
groundtruth_paths_gen()[source]
	Returns a generator of ground truth paths for each time step.

	Yields:
		datetime.datetime – Datetime of current time step

	set of GroundTruthPath – Ground truth paths existing in the time step

	
class stonesoup.simulator.simple.SwitchOneTargetGroundTruthSimulator(initial_state: State, transition_models: Sequence[TransitionModel], model_probs: ndarray, timestep: timedelta = datetime.timedelta(seconds=1), number_steps: int = 100, seed: int | None = None)[source]
	Bases: SingleTargetGroundTruthSimulator

Target simulator that produces a single target. This target switches
between multiple transition models based on a markov matrix
(model_probs)

	Parameters:
		initial_state (State) – Initial state to use to generate ground truth

	transition_models (Sequence[TransitionModel]) – List of transition models to be used, ensure that they all have the same dimensions.

	model_probs (numpy.ndarray) – A matrix of probabilities. The element in the ith row and the jth column is the probability of switching from the ith transition model in transition_models to the jth

	timestep (datetime.timedelta, optional) – Time step between each state. Default one second.

	number_steps (int, optional) – Number of time steps to run for

	seed (Optional[int], optional) – Seed for random number generation. Default None

	
transition_models: Sequence[TransitionModel]
	List of transition models to be used, ensure that they all have the same dimensions.

	
model_probs: ndarray
	A matrix of probabilities. The element in the ith row and the jth column is the probability of switching from the ith transition model in transition_models to the jth

	
seed: int | None
	Seed for random number generation. Default None

	
property transition_model
	Transition Model used as propagator for track.

	
class stonesoup.simulator.simple.MultiTargetGroundTruthSimulator(transition_model: TransitionModel, initial_state: GaussianState, timestep: timedelta = datetime.timedelta(seconds=1), number_steps: int = 100, birth_rate: float = 1.0, death_probability: Probability = 0.1, seed: int | None = None, preexisting_states: Collection[StateVector] = [], initial_number_targets: int = 0)[source]
	Bases: SingleTargetGroundTruthSimulator

Target simulator that produces multiple targets.

Targets are created and destroyed randomly, as defined by the birth rate
and death probability.

	Parameters:
		transition_model (TransitionModel) – Transition Model used as propagator for track.

	initial_state (GaussianState) – Initial state to use to generate states

	timestep (datetime.timedelta, optional) – Time step between each state. Default one second.

	number_steps (int, optional) – Number of time steps to run for

	birth_rate (float, optional) – Rate at which tracks are born. Expected number of occurrences (λ) in Poisson distribution. Default 1.0.

	death_probability (Probability, optional) – Probability of track dying in each time step. Default 0.1.

	seed (Optional[int], optional) – Seed for random number generation. Default None

	preexisting_states (Collection[StateVector], optional) – State vectors at time 0 for groundtruths which should exist at the start of simulation.

	initial_number_targets (int, optional) – Initial number of targets to be simulated. These simulated targets will be made in addition to those defined by preexisting_states.

	
transition_model: TransitionModel
	Transition Model used as propagator for track.

	
initial_state: GaussianState
	Initial state to use to generate states

	
birth_rate: float
	Rate at which tracks are born. Expected number of occurrences (λ) in Poisson distribution. Default 1.0.

	
death_probability: Probability
	Probability of track dying in each time step. Default 0.1.

	
seed: int | None
	Seed for random number generation. Default None

	
preexisting_states: Collection[StateVector]
	State vectors at time 0 for groundtruths which should exist at the start of simulation.

	
initial_number_targets: int
	Initial number of targets to be simulated. These simulated targets will be made in addition to those defined by preexisting_states.

	
groundtruth_paths_gen(random_state=None)[source]
	Returns a generator of ground truth paths for each time step.

	Yields:
		datetime.datetime – Datetime of current time step

	set of GroundTruthPath – Ground truth paths existing in the time step

	
class stonesoup.simulator.simple.SwitchMultiTargetGroundTruthSimulator(initial_state: GaussianState, transition_models: Sequence[TransitionModel], model_probs: ndarray, timestep: timedelta = datetime.timedelta(seconds=1), number_steps: int = 100, birth_rate: float = 1.0, death_probability: Probability = 0.1, seed: int | None = None, preexisting_states: Collection[StateVector] = [], initial_number_targets: int = 0)[source]
	Bases: MultiTargetGroundTruthSimulator

Functions identically to MultiTargetGroundTruthSimulator,
but has the transition model switching ability from
SwitchOneTargetGroundTruthSimulator

	Parameters:
		initial_state (GaussianState) – Initial state to use to generate states

	transition_models (Sequence[TransitionModel]) – List of transition models to be used, ensure that they all have the same dimensions.

	model_probs (numpy.ndarray) – A matrix of probabilities. The element in the ith row and the jth column is the probability of switching from the ith transition model in transition_models to the jth

	timestep (datetime.timedelta, optional) – Time step between each state. Default one second.

	number_steps (int, optional) – Number of time steps to run for

	birth_rate (float, optional) – Rate at which tracks are born. Expected number of occurrences (λ) in Poisson distribution. Default 1.0.

	death_probability (Probability, optional) – Probability of track dying in each time step. Default 0.1.

	seed (Optional[int], optional) – Seed for random number generation. Default None

	preexisting_states (Collection[StateVector], optional) – State vectors at time 0 for groundtruths which should exist at the start of simulation.

	initial_number_targets (int, optional) – Initial number of targets to be simulated. These simulated targets will be made in addition to those defined by preexisting_states.

	
transition_models: Sequence[TransitionModel]
	List of transition models to be used, ensure that they all have the same dimensions.

	
model_probs: ndarray
	A matrix of probabilities. The element in the ith row and the jth column is the probability of switching from the ith transition model in transition_models to the jth

	
seed: int | None
	Seed for random number generation. Default None

	
property transition_model
	Transition Model used as propagator for track.

	
class stonesoup.simulator.simple.SimpleDetectionSimulator(groundtruth: GroundTruthReader, measurement_model: MeasurementModel, meas_range: ndarray, detection_probability: Probability = 0.9, clutter_rate: float = 2.0, seed: int | None = None)[source]
	Bases: DetectionSimulator

A simple detection simulator.

	Parameters:
		groundtruth (GroundTruthReader) –

	measurement_model (MeasurementModel) –

	meas_range (numpy.ndarray) –

	detection_probability (Probability, optional) –

	clutter_rate (float, optional) –

	seed (Optional[int], optional) – Seed for random number generation. Default None

	groundtruth – Source of ground truth tracks used to generate detections for.

	measurement_model – Measurement model used in generating detections.

	
seed: int | None
	Seed for random number generation. Default None

	
property clutter_spatial_density
	returns the clutter spatial density of the measurement space - num
clutter detections per unit volume per timestep

	
detections_gen(random_state=None)[source]
	Returns a generator of detections for each time step.

	Yields:
		datetime.datetime – Datetime of current time step

	set of Detection – Detections generate in the time step

	
class stonesoup.simulator.simple.SwitchDetectionSimulator(groundtruth: GroundTruthReader, measurement_model: MeasurementModel, meas_range: ndarray, detection_probabilities: Sequence[Probability], clutter_rate: float = 2.0, seed: int | None = None)[source]
	Bases: SimpleDetectionSimulator

Functions identically as the SimpleDetectionSimulator, but for
ground truth paths formed using multiple transition models it allows the
user to assign a detection probability to each transition models.
For example, if you wanted a higher detection probability when the
simulated object makes a turn

	Parameters:
		groundtruth (GroundTruthReader) –

	measurement_model (MeasurementModel) –

	meas_range (numpy.ndarray) –

	detection_probabilities (Sequence[Probability]) – List of probabilities that correspond to the detection probability of the simulated object while undergoing each transition model

	clutter_rate (float, optional) –

	seed (Optional[int], optional) – Seed for random number generation. Default None

	
detection_probabilities: Sequence[Probability]
	List of probabilities that correspond to the detection probability of the simulated object while undergoing each transition model

	
class stonesoup.simulator.simple.DummyGroundTruthSimulator(times: Sequence[datetime])[source]
	Bases: GroundTruthSimulator

A Dummy Ground Truth Simulator which allows simulations to be built
where platform, rather than ground truth objects, motions are simulated.

It returns an empty set at each time step.

	Parameters:
	times (Sequence[datetime.datetime]) – list of times to return

	
times: Sequence[datetime]
	list of times to return

	
groundtruth_paths_gen()[source]
	Returns a generator of ground truth paths for each time step.

	Yields:
		datetime.datetime – Datetime of current time step

	set of GroundTruthPath – Ground truth paths existing in the time step

Platform Simulator

	
class stonesoup.simulator.platform.PlatformDetectionSimulator(groundtruth: GroundTruthReader, platforms: Sequence[Platform])[source]
	Bases: DetectionSimulator

A simple platform detection simulator.

Processes ground truth data and generates Detection data
according to a list of platforms by calling each sensor in these platforms.

	Parameters:
		groundtruth (GroundTruthReader) – Source of ground truth tracks used to generate detections for.

	platforms (Sequence[Platform]) – List of platforms in Platform to generate sensor detections from.

	
groundtruth: GroundTruthReader
	Source of ground truth tracks used to generate detections for.

	
platforms: Sequence[Platform]
	List of platforms in Platform to generate sensor detections from.

	
detections_gen()[source]
	Returns a generator of detections for each time step.

	Yields:
		datetime.datetime – Datetime of current time step

	set of Detection – Detections generate in the time step

Transition Simulator

	
stonesoup.simulator.transition.create_smooth_transition_models(initial_state, x_coords, y_coords, times, turn_rate)[source]
	Generate a list of constant-turn and constant acceleration transition models alongside a
list of transition times to provide smooth transitions between 2D cartesian coordinates and
time pairs.
An assumption is that the initial_state’s x, y coordinates are the first elements of x_ccords
and y_coords respectively. Ie. The platform starts at the first coordinates.

	Parameters:
		initial_state (State) – The initial state of the platform.

	x_coords – A list of int/float x-coordinates (cartesian) in the order that the target must follow.

	y_coords – A list of int/float y-coordinates (cartesian) in the order that the target must follow.

	times – A list of datetime dictating the times at which the target must be at
each corresponding coordinate.

	turn_rate (Float) – Angular turn rate (radians/second) measured anti-clockwise from positive x-axis.

	Returns:
	
	transition_models – A list of KnownTurnRate and Point2PointConstantAcceleration
transition models.

	transition_times – A list of timedelta dictating the transition time for each
corresponding transition model in transition_models.

Notes

x_coords, y_coords and times must be of same length.
This method assumes a cartesian state space with velocities eg.
\((x, \dot{x}, y, \dot{y})\). It returns transition models for 2 cartesian coordinates and
their corresponding velocities.

	
exception stonesoup.simulator.transition.OvershootError[source]
	Bases: Exception

	
class stonesoup.simulator.transition.Point2PointConstantAcceleration(state: State, destination: Tuple[float, float], duration: timedelta)[source]
	Bases: TransitionModel

Constant acceleration transition model for 2D cartesian coordinates

The platform is assumed to move with constant acceleration between two given cartesian
coordinates.
Motion is determined by the kinematic formulae:

\[\begin{split}v &= u + at \\
s &= ut + \frac{1}{2} at^2\end{split}\]

Where \(u, v, a, t, s\) are initial speed, final speed, acceleration, transition time and
distance travelled respectively.

	Parameters:
		state (State) – The initial state, assumed to have x and y cartesian position andvelocities

	destination (Tuple[float, float]) – Destination coordinates in 2D cartesiancoordinates (x, y)

	duration (datetime.timedelta) – Duration of transition in seconds

	
state: State
	The initial state, assumed to have x and y cartesian position andvelocities

	
destination: Tuple[float, float]
	Destination coordinates in 2D cartesiancoordinates (x, y)

	
duration: timedelta
	Duration of transition in seconds

	
property ndim_state
	Number of state dimensions

	
pdf(state1, state2, **kwargs)[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples=1, **kwargs)[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
function(state, time_interval, **kwargs)[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
class stonesoup.simulator.transition.Point2PointStop(state: State, destination: Tuple[float, float])[source]
	Bases: TransitionModel

Constant acceleration transition model for 2D cartesian coordinates

The platform is assumed to move with constant acceleration between two given cartesian
coordinates.
Motion is determined by the kinematic formulae:

\[\begin{split}v &= u + at \\
v^2 &= u^2 + 2as\end{split}\]

Where \(u, v, a, t, s\) are initial speed, final speed, acceleration, transition time and
distance travelled respectively.
The platform is decelerated to 0 velocity at the destination point and waits for the remaining
duration.

	Parameters:
		state (State) – The initial state, assumed to have x and y cartesian position andvelocities

	destination (Tuple[float, float]) – Destination coordinates in 2D cartesiancoordinates (x, y)

	
state: State
	The initial state, assumed to have x and y cartesian position andvelocities

	
destination: Tuple[float, float]
	Destination coordinates in 2D cartesiancoordinates (x, y)

	
property ndim_state
	Number of state dimensions

	
pdf(state1, state2, **kwargs)[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples=1, **kwargs)[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
function(state, time_interval, **kwargs)[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
class stonesoup.simulator.transition.ConstantJerkSimulator(position_mapping: Sequence[int], init_state: State, final_state: State, velocity_mapping: Sequence[int] = None)[source]
	Bases: TransitionModel

Constant, noiseless, jerk transition model for cartesian space.

The state space has no acceleration or jerk elements. I.E. the only kinematic components are
position and velocity.

Solution given by \(\vec{\ddddot{x}} = \vec{0}\)

The user will provide an initial and final state, each of which containing initial cartesian
position and velocities. For example, \((x, \dot{x}, y, \dot{y})\).

Components of the state vector that are not position or velocity are kept constant.
Initial and final accelerations are uniquely defined by this input.

Notes

Acceleration instantaneously changes at each target state

	Parameters:
		position_mapping (Sequence[int]) – Mapping between platform position and state vector.

	init_state (State) – Initial state to move from. Must be ndim_state dimensions.

	final_state (State) – Final state to move to. Must be ndim_state dimensions.

	velocity_mapping (Sequence[int], optional) – Mapping between platform velocity and state vector. Defaults to [m+1 for m in position_mapping]

	
position_mapping: Sequence[int]
	Mapping between platform position and state vector.

	
init_state: State
	Initial state to move from. Must be ndim_state dimensions.

	
final_state: State
	Final state to move to. Must be ndim_state dimensions.

	
velocity_mapping: Sequence[int]
	Mapping between platform velocity and state vector. Defaults to [m+1 for m in position_mapping]

	
property ndim_state
	Number of state space dimensions.

	
covar(**kwargs)[source]
	Must be added due to inheritance.

	
pdf(state1, state2, **kwargs)[source]
	Must be added due to inheritance.

	
rvs(num_samples=1, **kwargs)[source]
	Must be added due to inheritance.

	
function(state, time_interval, **kwargs)[source]
	Apply a constant jerk transition to state, for time_interval duration, keeping
elements of state vector that are not position or velocity constant.

	
static calculate_pos(init_x, init_v, init_a, jerk, T)[source]
	Calculate position, along a particular axis.

	Parameters:
		init_x (float) – Initial position along axis

	init_v (float) – Initial velocity along axis

	init_a (float) – Initial acceleration along axis

	jerk (float) – Constant jerk value along axis

	T (float) – Number for seconds to carry-out jerk transition

	Returns:
	New position along axis, given by:
\(X' = \frac{J_0 T^3}{6} + \frac{A_0 T^2}{2} + V_0 T + X_0\)

	Return type:
	float

	
classmethod create_models(states: Sequence[State], position_mapping, velocity_mapping=None)[source]
	Generate a list of ConstantJerkSimulator and transition durations, given a
list of states.

 Previous
 Next

 © Copyright 2017-2024 Stone Soup contributors.
 Revision 10e26e00.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v1.2
	v1.1
	v1.0
	v0.1b12
	v0.1b11
	v0.1b10
	v0.1b9
	v0.1b8
	v0.1b7
	v0.1b6
	v0.1b5
	v0.1b4
	v0.1b3

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

