

 Stone Soup

 latest

 	Framework Design
	Stone Soup Framework	Component Interfaces
	Base Data Types
	Declarative Base
	Configuration
	Functions
	Measures
	Plotter
	Plugins
	Serialisation
	Components	Enabling Components
	Algorithm Components	Data Association
	Deleters
	Gater
	Hypothesiser
	Initiators
	Mixture Reducers
	Models
	Predictors
	Regulariser
	Resampler
	Sampler
	Smoothers
	Updaters

	Data Types

	Tutorials
	Examples
	Demonstrations
	Contributing
	Copyright & License

 Stone Soup

 	
	Stone Soup Framework
	Models
	Transition Models
	
 Edit on GitHub

Transition Models

	
class stonesoup.models.transition.base.TransitionModel[source]
	Bases: Model

Transition Model base class

	
property ndim: int
	Number of dimensions of model

	
abstract property ndim_state: int
	Number of state dimensions

	
class stonesoup.models.transition.base.CombinedGaussianTransitionModel(model_list: Sequence[GaussianModel], seed: int | None = None)[source]
	Bases: TransitionModel, GaussianModel

Combine multiple models into a single model by stacking them.

The assumption is that all models are Gaussian.
Time Variant, and Time Invariant models can be combined together.
If any of the models are time variant the keyword argument “time_interval”
must be supplied to all methods

	Parameters:
		model_list (Sequence[GaussianModel]) – List of Transition Models.

	seed (Optional[int], optional) – Seed for random number generation

	
model_list: Sequence[GaussianModel]
	List of Transition Models.

	
function(state, noise=False, **kwargs) → StateVector[source]
	Applies each transition model in model_list in turn to the state’s
corresponding state vector components.
For example, in a 3D state space, with model_list = [modelA(ndim_state=2),
modelB(ndim_state=1)], this would apply modelA to the state vector’s 1st and 2nd elements,
then modelB to the remaining 3rd element.

	Parameters:
	state (stonesoup.state.State) – The state to be transitioned according to the models in model_list.

	Returns:
	state_vector – of shape (ndim_state, 1). The resultant state vector of the transition.

	Return type:
	stonesoup.types.array.StateVector

	
jacobian(state, **kwargs)[source]
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
covar(**kwargs)[source]
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

Linear

	
class stonesoup.models.transition.linear.LinearGaussianTransitionModel(seed: int | None = None)[source]
	Bases: TransitionModel, LinearModel, GaussianModel

	Parameters:
	seed (Optional[int], optional) – Seed for random number generation

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
abstract covar(**kwargs) → CovarianceMatrix
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
abstract matrix(**kwargs) → ndarray
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.CombinedLinearGaussianTransitionModel(model_list: Sequence[GaussianModel], seed: int | None = None)[source]
	Bases: LinearModel, CombinedGaussianTransitionModel

Combine multiple models into a single model by stacking them.

The assumption is that all models are Linear and Gaussian.
Time Variant, and Time Invariant models can be combined together.
If any of the models are time variant the keyword argument “time_interval”
must be supplied to all methods

	Parameters:
		model_list (Sequence[GaussianModel]) – List of Transition Models.

	seed (Optional[int], optional) – Seed for random number generation

	
matrix(**kwargs)[source]
	Model matrix \(F\)

	Return type:
	numpy.ndarray of shape (ndim_state, ndim_state)

	
covar(**kwargs)
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
model_list: Sequence[GaussianModel]
	List of Transition Models.

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.LinearGaussianTimeInvariantTransitionModel(transition_matrix: ndarray, covariance_matrix: CovarianceMatrix, seed: int | None = None, control_matrix: ndarray = None)[source]
	Bases: LinearGaussianTransitionModel, TimeInvariantModel

Generic Linear Gaussian Time Invariant Transition Model.

	Parameters:
		transition_matrix (numpy.ndarray) – Transition matrix \(\mathbf{F}\).

	covariance_matrix (CovarianceMatrix) – Transition noise covariance matrix \(\mathbf{Q}\).

	seed (Optional[int], optional) – Seed for random number generation

	control_matrix (numpy.ndarray, optional) – Control matrix \(\mathbf{B}\).

	
transition_matrix: ndarray
	Transition matrix \(\mathbf{F}\).

	
control_matrix: ndarray
	Control matrix \(\mathbf{B}\).

	
covariance_matrix: CovarianceMatrix
	Transition noise covariance matrix \(\mathbf{Q}\).

	
matrix(**kwargs)[source]
	Model matrix \(F\)

	Returns:
	The model matrix evaluated given the provided time interval.

	Return type:
	numpy.ndarray of shape (ndim_state, ndim_state)

	
covar(**kwargs)[source]
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.ConstantNthDerivative(constant_derivative: int, noise_diff_coeff: float, seed: int | None = None)[source]
	Bases: LinearGaussianTransitionModel, TimeVariantModel

Discrete model based on the Nth derivative with respect to time being
constant, to set derivative use keyword argument
constant_derivative

The model is described by the following SDEs:

\begin{eqnarray}
 dx^{(N-1)} & = & x^{(N)} dt & | {(N-1)th \ derivative \ on \
 X-axis (m)} \\
 dx^{(N)} & = & q\cdot dW_t,\ W_t \sim \mathcal{N}(0,q^2) & | \
 Nth\ derivative\ on\ X-axis (m/s^{N})
\end{eqnarray}

It is hard to represent the matrix form of these due to the fact that they
vary with N, examples for N=1 and N=2 can be found in the
ConstantVelocity and ConstantAcceleration models
respectively. To aid visualisation of \(F_t\) the elements are
calculated as the terms of the taylor expansion of each state variable.

	Parameters:
		constant_derivative (int) – The order of the derivative with respect to time to be kept constant, eg if 2 identical to constant acceleration

	noise_diff_coeff (float) – The Nth derivative noise diffusion coefficient (Variance) \(q\)

	seed (Optional[int], optional) – Seed for random number generation

	
constant_derivative: int
	The order of the derivative with respect to time to be kept constant, eg if 2 identical to constant acceleration

	
noise_diff_coeff: float
	The Nth derivative noise diffusion coefficient (Variance) \(q\)

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
matrix(time_interval, **kwargs)[source]
	Model matrix

	
covar(time_interval, **kwargs)[source]
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.RandomWalk(noise_diff_coeff: float, seed: int | None = None)[source]
	Bases: ConstantNthDerivative

This is a class implementation of a discrete, time-variant 1D
Linear-Gaussian Random Walk Transition Model.

The target is assumed to be (almost) stationary, where
target velocity is modelled as white noise.

	Parameters:
		noise_diff_coeff (float) – The position noise diffusion coefficient \(q\)

	seed (Optional[int], optional) – Seed for random number generation

	
noise_diff_coeff: float
	The position noise diffusion coefficient \(q\)

	
property constant_derivative
	For random walk, this is 0.

	
covar(time_interval, **kwargs)
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.ConstantVelocity(noise_diff_coeff: float, seed: int | None = None)[source]
	Bases: ConstantNthDerivative

This is a class implementation of a discrete, time-variant 1D
Linear-Gaussian Constant Velocity Transition Model.

The target is assumed to move with (nearly) constant velocity, where
target acceleration is modelled as white noise.

The model is described by the following SDEs:

\begin{eqnarray}
 dx_{pos} & = & x_{vel} d & | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = & q\cdot dW_t,\ W_t \sim \mathcal{N}(0,q^2) & | \
 Speed on\ X-axis (m/s)
\end{eqnarray}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel}
 \end{bmatrix}\end{split}\]

\[\begin{split}F_t & = & \begin{bmatrix}
 1 & dt\\
 0 & 1
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & \begin{bmatrix}
 \frac{dt^3}{3} & \frac{dt^2}{2} \\
 \frac{dt^2}{2} & dt
 \end{bmatrix} q\end{split}\]

	Parameters:
		noise_diff_coeff (float) – The velocity noise diffusion coefficient \(q\)

	seed (Optional[int], optional) – Seed for random number generation

	
noise_diff_coeff: float
	The velocity noise diffusion coefficient \(q\)

	
property constant_derivative
	For constant velocity, this is 1.

	
covar(time_interval, **kwargs)
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.ConstantAcceleration(noise_diff_coeff: float, seed: int | None = None)[source]
	Bases: ConstantNthDerivative

This is a class implementation of a discrete, time-variant 1D Constant
Acceleration Transition Model.

The target acceleration is modeled as a zero-mean white noise random
process.

The model is described by the following SDEs:

\begin{eqnarray}
 dx_{pos} & = & x_{vel} d & | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = & x_{acc} d & | {Speed \
 on\ X-axis (m/s)} \\
 dx_{acc} & = & q W_t,\ W_t \sim
 \mathcal{N}(0,q^2) & | {Acceleration \ on \ X-axis (m^2/s)}

\end{eqnarray}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel} \\
 x_{acc}
 \end{bmatrix}\end{split}\]

\[\begin{split}F_t & = & \begin{bmatrix}
 1 & dt & \frac{dt^2}{2} \\
 0 & 1 & dt \\
 0 & 0 & 1
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & \begin{bmatrix}
 \frac{dt^5}{20} & \frac{dt^4}{8} & \frac{dt^3}{6} \\
 \frac{dt^4}{8} & \frac{dt^3}{3} & \frac{dt^2}{2} \\
 \frac{dt^3}{6} & \frac{dt^2}{2} & dt
 \end{bmatrix} q\end{split}\]

	Parameters:
		noise_diff_coeff (float) – The acceleration noise diffusion coefficient \(q\)

	seed (Optional[int], optional) – Seed for random number generation

	
noise_diff_coeff: float
	The acceleration noise diffusion coefficient \(q\)

	
property constant_derivative
	For constant acceleration, this is 2.

	
covar(time_interval, **kwargs)
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.NthDerivativeDecay(decay_derivative: int, noise_diff_coeff: float, damping_coeff: float, seed: int | None = None)[source]
	Bases: LinearGaussianTransitionModel, TimeVariantModel

Discrete model based on the Nth derivative with respect to time
decaying to 0 exponentially, to set derivative use keyword argument
decay_derivative

The model is described by the following SDEs:

\begin{eqnarray}
 dx^{(N-1)} & = & x^{(N)} dt & | {(N-1)th derivative \ on \
 X-axis (m)} \\
 dx^{(N)} & = & -K x^{N} dt + q\cdot dW_t,\ W_t \sim
 \mathcal{N}(0,q^2) & | \ Nth\ derivative\ on\ X-axis (m/s^{N})
\end{eqnarray}

The transition and covariance matrices are very difficult to express
simply, but examples for N=1 and N=2 are given in
OrnsteinUhlenbeck and Singer respectively.

	Parameters:
		decay_derivative (int) – The derivative with respect to time to decay exponentially, eg if 2 identical to singer

	noise_diff_coeff (float) – The noise diffusion coefficient \(q\)

	damping_coeff (float) – The Nth derivative damping coefficient \(K\)

	seed (Optional[int], optional) – Seed for random number generation

	
decay_derivative: int
	The derivative with respect to time to decay exponentially, eg if 2 identical to singer

	
noise_diff_coeff: float
	The noise diffusion coefficient \(q\)

	
damping_coeff: float
	The Nth derivative damping coefficient \(K\)

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
matrix(time_interval, **kwargs)[source]
	Model matrix

	
covar(time_interval, **kwargs)[source]
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.OrnsteinUhlenbeck(noise_diff_coeff: float, damping_coeff: float, seed: int | None = None)[source]
	Bases: NthDerivativeDecay

This is a class implementation of a discrete, time-variant 1D
Linear-Gaussian Ornstein Uhlenbeck Transition Model.

The target is assumed to move with (nearly) constant velocity, which
exponentially decays to zero over time, and target acceleration is
modeled as white noise.

The model is described by the following SDEs:

\begin{eqnarray}
 dx_{pos} & = & x_{vel} dt & | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = & -K x_{vel} dt + q dW_t,
 W_t \sim \mathcal{N}(0,q) & | {Speed\ on \
 X-axis (m/s)}
\end{eqnarray}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel}
 \end{bmatrix}\end{split}\]

\[\begin{split}F_t & = & \begin{bmatrix}
 1 & \frac{1}{K}(1 - e^{-Kdt})\\
 0 & e^{-Kdt}
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & \begin{bmatrix}
 \frac{dt - \frac{2}{K}(1 - e^{-Kdt})
 + \frac{1}{2K}(1 - e^{-2Kdt})}{K^2} &
 \frac{\frac{1}{K}(1 - e^{-Kdt})
 - \frac{1}{2K}(1 - e^{-2Kdt})}{K} \\
 \frac{\frac{1}{K}(1 - e^{-Kdt})
 - \frac{1}{2K}(1 - e^{-2Kdt})}{K} &
 \frac{1 - e^{-2Kdt}}{2K}
 \end{bmatrix} q\end{split}\]

	Parameters:
		noise_diff_coeff (float) – The velocity noise diffusion coefficient \(q\)

	damping_coeff (float) – The velocity damping coefficient \(K\)

	seed (Optional[int], optional) – Seed for random number generation

	
noise_diff_coeff: float
	The velocity noise diffusion coefficient \(q\)

	
damping_coeff: float
	The velocity damping coefficient \(K\)

	
property decay_derivative
	The derivative with respect to time to decay exponentially, eg if 2 identical to singer

	
covar(time_interval, **kwargs)
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.Singer(noise_diff_coeff: float, damping_coeff: float, seed: int | None = None)[source]
	Bases: NthDerivativeDecay

This is a class implementation of a discrete, time-variant 1D Singer
Transition Model.

The target acceleration is modeled as a zero-mean Gauss-Markov random
process.

The model is described by the following SDEs:

\begin{eqnarray}
 dx_{pos} & = & x_{vel} dt & | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = & x_{acc} dt & | {Speed \
 on\ X-axis (m/s)} \\
 dx_{acc} & = & -K x_{acc} dt + q W_t,\ W_t \sim
 \mathcal{N}(0,q^2) & | {Acceleration \ on \ X-axis (m^2/s)}

\end{eqnarray}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel} \\
 x_{acc}
 \end{bmatrix}\end{split}\]

\[\begin{split}F_t & = & \begin{bmatrix}
 1 & dt & (K dt-1+e^{-K dt})/K^2 \\
 0 & 1 & (1-e^{-K dt})/K \\
 0 & 0 & e^{-K t}
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & q \begin{bmatrix}
 \frac{[1-e^{-2K dt}] + 2K dt +
 \frac{2K^3 dt^3}{3}- 2K^2 dt^2 -
 4K dt e^{-K dt} }{2K^5} &
 \frac{(K dt - [1-e^{-K dt}])^2}{2K^4} &
 \frac{[1-e^{-2K dt}]-2K dt e^{-K dt}}
 {2K^3} \\
 \frac{(K dt - [1 - e^{-K dt}])^2}{2K^4} &
 \frac{2K dt - 4[1-e^{-K dt}] +
 [1-e^{-2K dt}]}{2K^3} &
 \frac{[1-e^{-K dt}]^2}{2K^2} \\
 \frac{[1- e^{-2K dt}]-2K dt e^{-K dt}}
 {2K^3} &
 \frac{[1-e^{-K dt}]^2}{2K^2} &
 \frac{1-e^{-2K dt}}{2K}
 \end{bmatrix}\end{split}\]

	Parameters:
		noise_diff_coeff (float) – The acceleration noise diffusion coefficient \(q\)

	damping_coeff (float) – The reciprocal of the decorrelation time \(\alpha\)

	seed (Optional[int], optional) – Seed for random number generation

	
noise_diff_coeff: float
	The acceleration noise diffusion coefficient \(q\)

	
damping_coeff: float
	The reciprocal of the decorrelation time \(\alpha\)

	
property decay_derivative
	The derivative with respect to time to decay exponentially, eg if 2 identical to singer

	
covar(time_interval, **kwargs)
	Model covariance

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.SingerApproximate(noise_diff_coeff: float, damping_coeff: float, seed: int | None = None)[source]
	Bases: Singer

	Parameters:
		noise_diff_coeff (float) – The acceleration noise diffusion coefficient \(q\)

	damping_coeff (float) – The reciprocal of the decorrelation time \(\alpha\)

	seed (Optional[int], optional) – Seed for random number generation

	
property decay_derivative
	The derivative with respect to time to decay exponentially, eg if 2 identical to singer

	
covar(time_interval, **kwargs)[source]
	Returns the transition model noise covariance matrix.

	Parameters:
	time_interval (datetime.timedelta) – A time interval \(dt\)

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
damping_coeff: float
	The reciprocal of the decorrelation time \(\alpha\)

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of model state dimensions.

	Return type:
	int

	
noise_diff_coeff: float
	The acceleration noise diffusion coefficient \(q\)

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.KnownTurnRateSandwich(turn_noise_diff_coeffs: ndarray, turn_rate: float, model_list: Sequence[LinearGaussianTransitionModel], seed: int | None = None)[source]
	Bases: LinearGaussianTransitionModel, TimeVariantModel

This is a class implementation of a time-variant 2D Constant Turn
Model. This model is used, as opposed to the normal KnownTurnRate
model, when the turn occurs in 2 dimensions that are not adjacent in the
state vector, eg if the turn occurs in the x-z plane but the state vector
is of the form \((x,y,z)\). The list of transition models are to be
applied to any state variables that lie in between, eg if for the above
example you wanted the y component to move with constant velocity, you
would put a ConstantVelocity model in the list.

The target is assumed to move with (nearly) constant velocity and also
known (nearly) constant turn rate.

	Parameters:
		turn_noise_diff_coeffs (numpy.ndarray) – The acceleration noise diffusion coefficients \(q\)

	turn_rate (float) – The turn rate \(\omega\)

	model_list (Sequence[LinearGaussianTransitionModel]) – List of Transition Models.

	seed (Optional[int], optional) – Seed for random number generation

	
turn_noise_diff_coeffs: ndarray
	The acceleration noise diffusion coefficients \(q\)

	
turn_rate: float
	The turn rate \(\omega\)

	
model_list: Sequence[LinearGaussianTransitionModel]
	List of Transition Models.

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
matrix(time_interval, **kwargs)[source]
	Model matrix \(F\)

	Return type:
	numpy.ndarray of shape (ndim_state, ndim_state)

	
covar(time_interval, **kwargs)[source]
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.linear.KnownTurnRate(turn_noise_diff_coeffs: ndarray, turn_rate: float, seed: int | None = None)[source]
	Bases: KnownTurnRateSandwich

This is a class implementation of a discrete, time-variant 2D Constant
Turn Model.

The target is assumed to move with (nearly) constant velocity and also
known (nearly) constant turn rate.

The model is described by the following SDEs:

\begin{eqnarray}
 dx_{pos} & = & x_{vel} d & | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = &-\omega y_{pos} d & | {Speed \
 on\ X-axis (m/s)} \\
 dy_{pos} & = & y_{vel} d & | {Position \ on \
 Y-axis (m)} \\
 dy_{vel} & = & \omega x_{pos} d & | {Speed \
 on\ Y-axis (m/s)}
\end{eqnarray}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel} \\
 y_{pos} \\
 y_{vel}
 \end{bmatrix}\end{split}\]

\[\begin{split}F_t & = & \begin{bmatrix}
 1 & \frac{\sin\omega dt}{\omega} &
 0 &-\frac{1-\cos\omega dt}{\omega} \\
 0 & \cos\omega dt & 0 & -\sin\omega dt \\
 0 & \frac{1-\cos\omega dt}{\omega} &
 1 & \frac{\sin\omega dt}{\omega}\\
 0 & \sin\omega dt & 0 & \cos\omega dt
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & \begin{bmatrix}
 q_x^2 \frac{dt^3}{3} & q_x^2 \frac{dt^2}{2} &
 0 & 0 \\
 q_x^2 \frac{dt^2}{2} & q_x^2 dt &
 0 & 0 \\
 0 & 0 &
 q_y^2 \frac{dt^3}{3} & q_y^2 \frac{dt^2}{2}\\
 0 & 0 &
 q_y^2 \frac{dt^2}{2} & q_y^2 dt
 \end{bmatrix}\end{split}\]

	Parameters:
		turn_noise_diff_coeffs (numpy.ndarray) – The acceleration noise diffusion coefficients \(q\)

	turn_rate (float) – The turn rate \(\omega\)

	seed (Optional[int], optional) – Seed for random number generation

	
property model_list
	For a turn in adjacent state vectors,
no transition models go in between

	
covar(time_interval, **kwargs)
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
matrix(time_interval, **kwargs)
	Model matrix \(F\)

	Return type:
	numpy.ndarray of shape (ndim_state, ndim_state)

	
property ndim: int
	Number of dimensions of model

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
turn_noise_diff_coeffs: ndarray
	The acceleration noise diffusion coefficients \(q\)

	
turn_rate: float
	The turn rate \(\omega\)

NonLinear

	
class stonesoup.models.transition.nonlinear.GaussianTransitionModel(seed: int | None = None)[source]
	Bases: TransitionModel, GaussianModel

	Parameters:
	seed (Optional[int], optional) – Seed for random number generation

	
abstract covar(**kwargs) → CovarianceMatrix
	Model covariance

	
abstract function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
abstract property ndim_state: int
	Number of state dimensions

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.nonlinear.ConstantTurn(linear_noise_coeffs: ndarray, turn_noise_coeff: float, seed: int | None = None)[source]
	Bases: GaussianTransitionModel, TimeVariantModel

This is a class implementation of a discrete, time-variant 2D Constant
Turn Model.

The target is assumed to move with (nearly) constant velocity and also
an unknown (nearly) constant turn rate.

The model is described by the following SDEs:

\begin{align}
 dx_{pos} & = x_{vel} d \quad | {Position \ on \
 X-axis (m)} \\
 dx_{vel} & = -\omega y_{pos} d \quad | {Speed \
 on\ X-axis (m/s)} &\\
 dy_{pos} & = y_{vel} d \quad | {Position \ on \
 Y-axis (m)} \\
 dy_{vel} & = \omega x_{pos} d \quad | {Speed \
 on\ Y-axis (m/s)} \\
 d\omega & = q_\omega dt \quad | {Position \ on \ X,Y-axes (rad/sec)}
\end{align}

Or equivalently:

\[x_t = F_t x_{t-1} + w_t,\ w_t \sim \mathcal{N}(0,Q_t)\]

where:

\[\begin{split}x & = & \begin{bmatrix}
 x_{pos} \\
 x_{vel} \\
 y_{pos} \\
 y_{vel} \\
 \omega
 \end{bmatrix}\end{split}\]

\[\begin{split}F(x) & = & \begin{bmatrix}
 x+ \frac{x_{vel}}{\omega}\sin\omega dt -
 \frac{y_{vel}}{\omega}(1-\cos\omega dt) \\
 x_{vel}\cos\omega dt - y_{vel}\sin\omega dt \\
 y+ \frac{v_{vel}}{\omega}\sin\omega dt +
 \frac{x_{vel}}{\omega}(1-\cos\omega dt) \\
 x_{vel}\sin\omega dt + y_{vel}\sin\omega dt \\
 \omega
 \end{bmatrix}\end{split}\]

\[\begin{split}Q_t & = & \begin{bmatrix}
 \frac{dt^3q_x^2}{3} & \frac{dt^2q_x^2}{2} & 0 & 0 & 0 \\
 \frac{dt^2q_x^2}{2} & dtq_x^2 & 0 & 0 & 0 \\
 0 & 0 & \frac{dt^3q_y^2}{3} & \frac{dt^2q_y^2}{2} & 0 \\
 0 & 0 & \frac{dt^2q_y^2}{2} & dtq_y^2 & 0 \\
 0 & 0 & 0 & 0 & q_\omega^2
 \end{bmatrix}\end{split}\]

	Parameters:
		linear_noise_coeffs (numpy.ndarray) – The acceleration noise diffusion coefficients \([q_x, \: q_y]^T\)

	turn_noise_coeff (float) – The turn rate noise coefficient \(q_\omega\)

	seed (Optional[int], optional) – Seed for random number generation

	
linear_noise_coeffs: ndarray
	The acceleration noise diffusion coefficients \([q_x, \: q_y]^T\)

	
turn_noise_coeff: float
	The turn rate noise coefficient \(q_\omega\)

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
function(state, noise=False, **kwargs) → StateVector[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
covar(time_interval, **kwargs)[source]
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
class stonesoup.models.transition.nonlinear.ConstantTurnSandwich(linear_noise_coeffs: ndarray, turn_noise_coeff: float, model_list: Sequence[GaussianTransitionModel], seed: int | None = None)[source]
	Bases: ConstantTurn

This is a class implementation of a time-variant 2D Constant Turn
Model. This model is used, as opposed to the normal ConstantTurn
model, when the turn occurs in 2 dimensions that are not adjacent in the
state vector, eg if the turn occurs in the x-z plane but the state vector
is of the form \((x,y,z)\). The list of transition models are to be
applied to any state variables that lie in between, eg if for the above
example you wanted the y component to move with constant velocity, you
would put a ConstantVelocity model in the list.

The target is assumed to move with (nearly) constant velocity and also
unknown (nearly) constant turn rate.

	Parameters:
		linear_noise_coeffs (numpy.ndarray) – The acceleration noise diffusion coefficients \([q_x, \: q_y]^T\)

	turn_noise_coeff (float) – The turn rate noise coefficient \(q_\omega\)

	model_list (Sequence[GaussianTransitionModel]) – List of Transition Models.

	seed (Optional[int], optional) – Seed for random number generation

	
model_list: Sequence[GaussianTransitionModel]
	List of Transition Models.

	
property ndim_state
	ndim_state getter method

	Returns:
	The number of combined model state dimensions.

	Return type:
	int

	
function(state, noise=False, **kwargs) → StateVector[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
covar(time_interval, **kwargs)[source]
	Returns the transition model noise covariance matrix.

	Returns:
	The process noise covariance.

	Return type:
	stonesoup.types.state.CovarianceMatrix of shape (ndim_state, ndim_state)

	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
linear_noise_coeffs: np.ndarray
	The acceleration noise diffusion coefficients \([q_x, \: q_y]^T\)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
seed: int | None
	Seed for random number generation

	
turn_noise_coeff: float
	The turn rate noise coefficient \(q_\omega\)

Categorical

	
class stonesoup.models.transition.categorical.MarkovianTransitionModel(transition_matrix: Matrix)[source]
	Bases: TransitionModel

The transition model for categorical states

This is a time invariant, transition model of a Markov process.

A state space vector takes the form \(\alpha_t^i = P(\phi_t^i)\), representing a
categorical distribution over a discrete, finite set of possible categories
\(\Phi = \{\phi^m|m\in \mathbf{N}, m\le M\}\) (for some finite \(M\)).

Models the transition from one category to another.

Intended to be used in conjunction with the CategoricalState type.

	Parameters:
	transition_matrix (Matrix) – Stochastic matrix \(F_t^{ij} = F^{ij} = P(\phi_t^i|\phi_{t-1}^j)\) determining the conditional probability that an object is category \(\phi^i\) at ‘time’ \(t\) given that it was category \(\phi^j\) at ‘time’ \(t-1\). Columns are normalised.

	
transition_matrix: Matrix
	Stochastic matrix \(F_t^{ij} = F^{ij} = P(\phi_t^i|\phi_{t-1}^j)\) determining the conditional probability that an object is category \(\phi^i\) at ‘time’ \(t\) given that it was category \(\phi^j\) at ‘time’ \(t-1\). Columns are normalised.

	
function(state, time_interval: timedelta = None, noise: bool = False, **kwargs)[source]
	Applies the linear transformation:

\[F^{ij}\alpha_{t-1}^j = P(\phi_t^i|\phi_{t-1}^j)P(\phi_t^j)\]

The resultant vector is normalised.

Though this model is time-invariant, a check is made to see whether the time-interval given
is 0. In this instance, no transformation is applied.

	Parameters:
		state (CategoricalState) – The state to be transitioned.

	time_interval (datetime.timedelta) – Duration to transition state for.

	noise (bool) – Indicates whether transitioned vector is sampled from and the resultant category
returned instead. This is a discrete category instead of a distribution
over the state space. It is represented by an M-tuples, with all components
equal to 0, except at an index corresponding to the relevant category.
For example \(e^k\) indicates that the category is \(\phi^k\).
If False, the resultant distribution is returned.

	Returns:
	state_vector – of shape (ndim_state, 1). The resultant state vector of the transition.

	Return type:
	stonesoup.types.array.StateVector

	
property ndim_state
	Number of state dimensions

	
rvs()[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
property ndim: int
	Number of dimensions of model

	
pdf()[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

 Previous
 Next

 © Copyright 2017-2024 Stone Soup contributors.
 Revision 10e26e00.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v1.2
	v1.1
	v1.0
	v0.1b12
	v0.1b11
	v0.1b10
	v0.1b9
	v0.1b8
	v0.1b7
	v0.1b6
	v0.1b5
	v0.1b4
	v0.1b3

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

