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class stonesoup.models.base.Model[source]
	Bases: Base

Model type

Base/Abstract class for all models.

	
abstract property ndim: int
	Number of dimensions of model





	
abstract function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)




	Returns:
	The StateVector(s) with the model function evaluated.


	Return type:
	StateVector or StateVectors








	
jacobian(state, **kwargs)[source]
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state


	Returns:
	The model jacobian matrix evaluated around the given state vector.


	Return type:
	numpy.ndarray of shape (ndim_meas,         ndim_state)








	
abstract rvs(num_samples: int = 1, **kwargs) → StateVector | StateVectors[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type:
	2-D array of shape (ndim, num_samples)








	
abstract pdf(state1: State, state2: State, **kwargs) → Probability | ndarray[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) – 

	state2 (State) – 




	Returns:
	The likelihood of state1, given state2


	Return type:
	Probability or ndarray of Probability








	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray[source]
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) – 

	state2 (State) – 




	Returns:
	The log likelihood of state1, given state2


	Return type:
	float or ndarray












	
class stonesoup.models.base.LinearModel[source]
	Bases: Model

LinearModel class

Base/Abstract class for all linear models

	
abstract matrix(**kwargs) → ndarray[source]
	Model matrix





	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors[source]
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)




	Returns:
	The StateVector(s) with the model function evaluated.


	Return type:
	StateVector or StateVectors








	
jacobian(state: State, **kwargs) → ndarray[source]
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state


	Returns:
	The model jacobian matrix evaluated around the given state vector.


	Return type:
	numpy.ndarray of shape (ndim_meas,         ndim_state)












	
class stonesoup.models.base.ReversibleModel[source]
	Bases: Model

Non-linear model containing sufficient co-ordinate
information such that the linear co-ordinate conversions
can be calculated from the non-linear counterparts.

Contains an inverse function which computes the reverse
of the relevant linear-to-non-linear function

	
abstract inverse_function(detection: Detection, **kwargs) → StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters:
	detection (Detection) – Input state (non-linear format)


	Returns:
	The linear co-ordinates


	Return type:
	StateVector












	
class stonesoup.models.base.TimeVariantModel[source]
	Bases: Model

TimeVariantModel class

Base/Abstract class for all time-variant models





	
class stonesoup.models.base.TimeInvariantModel[source]
	Bases: Model

TimeInvariantModel class

Base/Abstract class for all time-invariant models





	
class stonesoup.models.base.GaussianModel(seed: int | None = None)[source]
	Bases: Model

GaussianModel class

Base/Abstract class for all Gaussian models

	Parameters:
	seed (Optional[int], optional) – Seed for random number generation




	
seed: int | None
	Seed for random number generation





	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors[source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:


\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)


	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.


	Return type:
	2-D array of shape (ndim, num_samples)








	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) – 

	state2 (State) – 




	Returns:
	The likelihood of state1, given state2


	Return type:
	Probability or ndarray of Probability








	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray[source]
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:


\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) – 

	state2 (State) – 




	Returns:
	The log likelihood of state1, given state2


	Return type:
	float or ndarray








	
abstract covar(**kwargs) → CovarianceMatrix[source]
	Model covariance
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