

 Stone Soup

 latest

 	Framework Design
	Stone Soup Framework	Component Interfaces
	Base Data Types
	Declarative Base
	Configuration
	Functions
	Measures
	Plotter
	Plugins
	Serialisation
	Components	Enabling Components
	Algorithm Components	Data Association
	Deleters
	Gater
	Hypothesiser
	Initiators
	Mixture Reducers
	Models
	Predictors
	Regulariser
	Resampler
	Sampler
	Smoothers
	Updaters

	Data Types

	Tutorials
	Examples
	Demonstrations
	Contributing
	Copyright & License

 Stone Soup

 	
	Stone Soup Framework
	Models
	
 Edit on GitHub

Models

	Clutter Models
	Control Models
	Measurement Models	Linear
	NonLinear
	Categorical
	Gas

	Transition Models	Linear
	NonLinear
	Categorical

	
class stonesoup.models.base.Model[source]
	Bases: Base

Model type

Base/Abstract class for all models.

	
abstract property ndim: int
	Number of dimensions of model

	
abstract function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors[source]
	Model function \(f_k(x(k),w(k))\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is used)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state, **kwargs)[source]
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
abstract rvs(num_samples: int = 1, **kwargs) → StateVector | StateVectors[source]
	Model noise/sample generation function

Generates noise samples from the model.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
abstract pdf(state1: State, state2: State, **kwargs) → Probability | ndarray[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray[source]
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
class stonesoup.models.base.LinearModel[source]
	Bases: Model

LinearModel class

Base/Abstract class for all linear models

	
abstract matrix(**kwargs) → ndarray[source]
	Model matrix

	
function(state: State, noise: bool | ndarray = False, **kwargs) → StateVector | StateVectors[source]
	Model linear function \(f_k(x(k),w(k)) = F_k(x_k) + w_k\)

	Parameters:
		state (State) – An input state

	noise (numpy.ndarray or bool) – An externally generated random process noise sample (the default is
False, in which case no noise will be added
if ‘True’, the output of rvs() is added)

	Returns:
	The StateVector(s) with the model function evaluated.

	Return type:
	StateVector or StateVectors

	
jacobian(state: State, **kwargs) → ndarray[source]
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
class stonesoup.models.base.ReversibleModel[source]
	Bases: Model

Non-linear model containing sufficient co-ordinate
information such that the linear co-ordinate conversions
can be calculated from the non-linear counterparts.

Contains an inverse function which computes the reverse
of the relevant linear-to-non-linear function

	
abstract inverse_function(detection: Detection, **kwargs) → StateVector[source]
	Takes in the result of the function and
computes the inverse function, returning the initial
input of the function.

	Parameters:
	detection (Detection) – Input state (non-linear format)

	Returns:
	The linear co-ordinates

	Return type:
	StateVector

	
class stonesoup.models.base.TimeVariantModel[source]
	Bases: Model

TimeVariantModel class

Base/Abstract class for all time-variant models

	
class stonesoup.models.base.TimeInvariantModel[source]
	Bases: Model

TimeInvariantModel class

Base/Abstract class for all time-invariant models

	
class stonesoup.models.base.GaussianModel(seed: int | None = None)[source]
	Bases: Model

GaussianModel class

Base/Abstract class for all Gaussian models

	Parameters:
	seed (Optional[int], optional) – Seed for random number generation

	
seed: int | None
	Seed for random number generation

	
rvs(num_samples: int = 1, random_state=None, **kwargs) → StateVector | StateVectors[source]
	Model noise/sample generation function

Generates noise samples from the model.

In mathematical terms, this can be written as:

\[v_t \sim \mathcal{N}(0,Q)\]

where \(v_t =\) noise and \(Q\) = covar.

	Parameters:
	num_samples (scalar, optional) – The number of samples to be generated (the default is 1)

	Returns:
	noise – A set of Np samples, generated from the model’s noise
distribution.

	Return type:
	2-D array of shape (ndim, num_samples)

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray[source]
	Model pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The likelihood of state1, given state2

	Return type:
	Probability or ndarray of Probability

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray[source]
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

In mathematical terms, this can be written as:

\[p = p(y_t | x_t) = \mathcal{N}(y_t; x_t, Q)\]

where \(y_t\) = state_vector1, \(x_t\) = state_vector2
and \(Q\) = covar.

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
abstract covar(**kwargs) → CovarianceMatrix[source]
	Model covariance

 Previous
 Next

 © Copyright 2017-2024 Stone Soup contributors.
 Revision 10e26e00.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v1.2
	v1.1
	v1.0
	v0.1b12
	v0.1b11
	v0.1b10
	v0.1b9
	v0.1b8
	v0.1b7
	v0.1b6
	v0.1b5
	v0.1b4
	v0.1b3

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

