

 Stone Soup

 latest

 	Framework Design
	Stone Soup Framework	Component Interfaces
	Base Data Types
	Declarative Base
	Configuration
	Functions
	Measures
	Plotter
	Plugins
	Serialisation
	Components	Enabling Components
	Algorithm Components	Data Association
	Deleters
	Gater
	Hypothesiser
	Initiators
	Mixture Reducers
	Models
	Predictors
	Regulariser
	Resampler
	Sampler
	Smoothers
	Updaters

	Data Types

	Tutorials
	Examples
	Demonstrations
	Contributing
	Copyright & License

 Stone Soup

 	
	Stone Soup Framework
	Models
	Clutter Models
	
 Edit on GitHub

Clutter Models

	
class stonesoup.models.clutter.ClutterModel(clutter_rate: float = 1.0, distribution: ~typing.Callable = <built-in method uniform of numpy.random._generator.Generator object>, dist_params: ~typing.Tuple = ((-200, 200), (-200, 200)), seed: int | ~numpy.random.mtrand.RandomState | None = None)[source]
	Bases: Model, ABC

A model for generating sensor clutter (false alarms) according to a specified
distribution in the state space relative to the sensor’s position.

Note

Instances of this class do not hold information about the measurement space until
immediately before they are called to function. As such, the same ClutterModel
object could be used with multiple different MeasurementModel as long
as they operate in the same state space.

	Parameters:
		clutter_rate (float, optional) – The average number of clutter points per time step. The actual number is Poisson distributed

	distribution (Callable, optional) – A function which represents the distribution of the clutter over the measurement space. The function should return a single value (ie, do not use multivariate distributions).

	dist_params (Tuple, optional) – The required parameters for the clutter distribution function. The length of the list must be equal to the number of state dimensions and should be defined for use in Cartesian space.The default defines the space for a uniform distribution in 2D. The call np.array([self.distribution(*arg) for arg in self.dist_params]) must return a numpy array of length equal to the number of dimensions.

	seed (Union[int, numpy.random.mtrand.RandomState, NoneType], optional) – Seed or state for random number generation. If defined as an integer, it will be used to create a numpy RandomState. Or it can be defined directly as a RandomState (useful if you want to pass one of the random state’s functions as the distribution).

	
clutter_rate: float
	The average number of clutter points per time step. The actual number is Poisson distributed

	
distribution: Callable
	A function which represents the distribution of the clutter over the measurement space. The function should return a single value (ie, do not use multivariate distributions).

	
dist_params: Tuple
	The required parameters for the clutter distribution function. The length of the list must be equal to the number of state dimensions and should be defined for use in Cartesian space.The default defines the space for a uniform distribution in 2D. The call np.array([self.distribution(*arg) for arg in self.dist_params]) must return a numpy array of length equal to the number of dimensions.

	
seed: int | RandomState | None
	Seed or state for random number generation. If defined as an integer, it will be used to create a numpy RandomState. Or it can be defined directly as a RandomState (useful if you want to pass one of the random state’s functions as the distribution).

	
function(ground_truths: Set[GroundTruthState], **kwargs) → Set[Clutter][source]
	Use the defined distribution and parameters to create simulated clutter
for the current time step. Return this clutter to the calling sensor so
that it can be added to the measurements.

	Parameters:
	ground_truths (a set of GroundTruthState) – The truth states which exist at this time step.

	Returns:
	The simulated clutter.

	Return type:
	set of Clutter

	
property ndim: int
	Return the number of measurement dimensions or, if a measurement model has
not yet been assigned, the number of state dimensions.

	
jacobian(state, **kwargs)
	Model jacobian matrix \(H_{jac}\)

	Parameters:
	state (State) – An input state

	Returns:
	The model jacobian matrix evaluated around the given state vector.

	Return type:
	numpy.ndarray of shape (ndim_meas, ndim_state)

	
logpdf(state1: State, state2: State, **kwargs) → float | ndarray
	Model log pdf/likelihood evaluation function

Evaluates the pdf/likelihood of state1, given the state
state2 which is passed to function().

	Parameters:
		state1 (State) –

	state2 (State) –

	Returns:
	The log likelihood of state1, given state2

	Return type:
	float or ndarray

	
rvs(num_samples: int = 1, **kwargs) → StateVector | StateVectors[source]
	Must be implemented to properly inherit the parent Model.

	
pdf(state1: State, state2: State, **kwargs) → Probability | ndarray[source]
	Must be implemented to properly inherit the parent Model.

 Previous
 Next

 © Copyright 2017-2024 Stone Soup contributors.
 Revision 10e26e00.

 Built with Sphinx using a
 theme
 provided by Read the Docs.

 Read the Docs
 v: latest

 	Versions
	latest
	stable
	v1.2
	v1.1
	v1.0
	v0.1b12
	v0.1b11
	v0.1b10
	v0.1b9
	v0.1b8
	v0.1b7
	v0.1b6
	v0.1b5
	v0.1b4
	v0.1b3

 	Downloads

 	On Read the Docs
	
 Project Home

	
 Builds

